Yolov8调用摄像头实时检测示例

本文提供了一个使用UltralyticsYOLOv8库在Python中通过OpenCV从摄像头捕获视频流并进行物体检测的示例。它强调了阅读官方文档的重要性,并展示了如何在运行时处理视频帧并显示标注结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文代码仅为示例,需自行修改。
此外,建议多看官方文档,也可看官方文档下的留言讨论,找自己需要的实现逻辑。现在ultralytics网站支持中文,阅读也不存在难度。
传送门:
ultralytics Yolov8官网
以下示例,采用OpenCV来从摄像头不断获取数据,调用Yolo模型推理。如有问题还望指出。

from ultralytics import YOLO
import cv2
model = YOLO('yolov8n.pt')

cap = cv2.VideoCapture(0) # 0表示调用摄像头

while True:
    ret, frame = cap.read()
    if not ret:
        break
    results = model(frame)
    annotated_frame = results[0].plot()
    cv2.imshow('YOLOv8', annotated_frame)
    if cv2.waitKey(1) == ord('q'):  # 按下q退出
        break

cap.release()
cv2.destroyAllWindows()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值