647. Palindromic Substrings

这道题直接用dp[i][j]保存i到j的Palindromic Substrings不好求递归式。
通过分析可以知道最多n+(n-1)+(n-2)+....+1,以nums[i]开头的最多n个,所以可以设dp[i][j]为i---j是不是 Palindromic Substrings,并记忆化搜索。

class Solution {
public:
    int countSubstrings(string s) {
        int len=s.size();
        int sum=0;
        vector<vector<int> > dp(len,vector<int>(len,0));
        for(int i=0;i<len;i++)
        {
            dp[i][i]=1;
            sum++;
        }
        for(int r=1;r<len;r++)//间距
        {
            for(int i=0;i+r<len;i++)
            {
                if(r==1)
                {
                    if(s[i]==s[i+r])
                    {
                        dp[i][i+r]=1;
                        sum++;
                    }
                }
                else
                {
                    if(s[i]==s[i+r])
                    {
                        dp[i][i+r]=dp[i+1][i+r-1];
                        if(dp[i][i+r])
                        {
                            sum++;
                        }
                    }
                }
            }
        }
        return sum;
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值