题目描述
又到暑假了,住在城市 AA 的 CarCar 想和朋友一起去城市 BB 旅游。她知道每个城市都有 44 个飞机场,分别位于一个矩形的 44 个顶点上,同一个城市中 22 个机场之间有 11 条笔直的高速铁路,第 II 个城市中高速铁路了的单位里程价格为 T_iTi ,任意两个不同城市的机场之间均有航线,所有航线单位里程的价格均为 tt 。
图例(从上而下)
机场
高速铁路
飞机航线
注意:图中并没有标出所有的铁路与航线。
那么 CarCar 应如何安排到城市B的路线才能尽可能的节省花费呢?她发现这并不是一个简单的问题,于是她来向你请教。
找出一条从城市 AA 到 BB 的旅游路线,出发和到达城市中的机场可以任意选取,要求总的花费最少。
输入输出格式
输入格式:
第一行为一个正整数 nn ( 0 \le n \le 100≤n≤10 ),表示有 nn 组测试数据。
每组的第一行有 44 个正整数 s,t,A,Bs,t,A,B 。
SS ( 0<S \le 1000<S≤100 )表示城市的个数, tt 表示飞机单位里程的价格, AA , BB 分别为城市 AA , BB 的序号,( 1 \le A1≤A, B \le SB≤S )。
接下来有 SS 行,其中第 II 行均有 77 个正整数 xi_1,yi_1,xi_2,yi_2,xi_3,yi_3,Tixi1,yi1,xi2,yi2,xi3,yi3,Ti ,这当中的( xi_1,yi_1xi1,yi1 ),( xi_2,yi_2xi2,yi2),( xi_3,yi_3xi3,yi3 )分别是第 ii 个城市中任意 33 个机场的坐标, TiTi 为第 i