weixin_30263277
码龄7年
  • 635,989
    被访问
  • 暂无
    原创
  • 546,398
    排名
  • 70
    粉丝
关注
提问 私信
  • 加入CSDN时间: 2015-07-31
博客简介:

weixin_30263277的博客

查看详细资料
个人成就
  • 获得111次点赞
  • 内容获得0次评论
  • 获得746次收藏
创作历程
  • 661篇
    2019年
  • 794篇
    2018年
  • 708篇
    2017年
  • 509篇
    2016年
  • 419篇
    2015年
  • 305篇
    2014年
  • 277篇
    2013年
  • 225篇
    2012年
  • 141篇
    2011年
  • 118篇
    2010年
  • 82篇
    2009年
  • 89篇
    2008年
  • 55篇
    2007年
  • 43篇
    2006年
  • 21篇
    2005年
  • 4篇
    2004年
成就勋章
  • 最近
  • 文章
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

通过公众号迁移快速开通留言功能方法

最近常常听自媒体人抱怨 “今年6月份注册了自己的微信公众号,就写写自己的小杂文啊、美妆种草啊之类的,但是一直没有留言功能。查了一下发现留言功能应该是基本自带的功能啊……为什么我的公众号没有评论功能呢……难过。”现在要开通公众号留言功能,该怎么做呢?唯一的方法是通过公众号迁移。即把一个带留言功能的老号迁移到你的公众号上。但是要求你的公众号是企业或机构主体(非个人订阅号),因为公...
转载
发布博客 2019.08.28 ·
227 阅读 ·
0 点赞 ·
0 评论

突然想写一篇关于自己爱情的,可能老了吧

我没有文笔,也没有文采,装不了深沉文艺,谈吐也不雅俗但也不粗鲁,可是我唯一算是优点就是比较真实的人吧。大三的时候谈过一个女朋友,人挺好的,各个方面都不错,当时挺粘的,异地,过节的时候会相互来到各自的城市一起过,我记得国庆节去她哪里,武汉吧,那时候正好是雨季,白天一起出去逛,晚上买火锅底料和菜自己弄火锅吃,我们各自处理一部分的菜系,整理好桌椅,摆好盘子,然后开锅,真的很开心的,我不善...
转载
发布博客 2019.07.23 ·
163 阅读 ·
1 点赞 ·
0 评论

2020届校级月考【1】

例1【2020届凤翔中学高三理科月考一第10题】已知函数\(y=f(x)\)是定义在\(R\)上的奇函数,且满足\(f(x+2)\)\(+f(x)=0\),当\(x\in [-2,0]\)时,\(f(x)=-x^2-2x\),则当\(x\in [4,6]\)时,\(y=f(x)\)的最小值为【】$A.-8$ $B.-1$ $C.0$ $D.1$分析:本题目的本质是求解函数\(f...
转载
发布博客 2019.09.24 ·
216 阅读 ·
0 点赞 ·
0 评论

绝对值函数

前言典例剖析例1当\(x\in [\cfrac{3}{2},4]\)时,不等式\(|ax^2+bx+4a|\leqslant 2x\)恒成立,则\(6a+b\)的最大值是_______________。分析:由于\(x\in [\cfrac{3}{2},4]\),故两边同除以\(x\),得到\(|ax+\cfrac{4a}{x}+b|\leqslant 2\),设\(f(x)=a...
转载
发布博客 2019.09.19 ·
471 阅读 ·
0 点赞 ·
0 评论

限定条件下的均值不等式求最值问题[整理]

前言注意理解\(a+b\geqslant 2\sqrt{ab}\),\(a,b>0\),注意理解字母\(a\),\(b\)能代表的内涵,比如可以是数字,字母;可以是单项式,多项式,可以是整式,分式,指数式,对数式,三角式,只要满足正定等三个条件即可使用,如果不满足此时只能依托对应的对勾函数的单调性求解最值。回顾反思均值不等式的使用技巧①负化正;②拆添项;③凑系数;④在指...
转载
发布博客 2019.09.12 ·
440 阅读 ·
0 点赞 ·
0 评论

高中数学知识结构网络[结构图]

前言来源于网络,感谢原作者。函数导数三角向量数列不等式解析几何立体几何统计概率其他内容转载于:https://www.cnblogs.com/wanghai0666/p/11441970.html...
转载
发布博客 2019.09.01 ·
228 阅读 ·
0 点赞 ·
0 评论

数学概念的演变

前言函数概念:函数的概念有两个,其一为初中的定义,称为传统定义,其二为高中的定义,称为近代定义。传统定义:设在某变化过程中有两个变量\(x\)、\(y\),如果对于\(x\)在某一范围内的每一个确定的值,\(y\)都有唯一确定的值与它对应,那么就称\(y\)是\(x\)的函数,\(x\)叫做自变量。我们将自变量\(x\)取值的集合叫做函数的定义域,和自变量\(x\)对应的\(y\)...
转载
发布博客 2019.09.27 ·
417 阅读 ·
0 点赞 ·
0 评论

根式函数

前言根式函数一般指被开方数中含有自变量的函数,涉及到根式函数的性质的研究,我们常观察所给的根式函数的结构特征,可以考虑代数换元法或者三角换元法,函数性质法,分子或者分母有理化,数形结合法等;万一这些思路都失效时,就可以考虑借助终极方法[导数法]来解决。典例剖析例1求函数\(f(x)=x-\sqrt{2-x}\)的值域。[法1]:代数换元法,先求定义域为\((-\infty,2]\...
转载
发布博客 2019.09.17 ·
1577 阅读 ·
1 点赞 ·
0 评论

数学模型应用举例

前言应用举例1由集合之间的关系求解参数的取值范围模型案例01【模型】若集合\(B=\{x\mid m+1\leq x\leq 1-2m \}\),集合\(A=\{x\mid -2\leq x\leq 7\}\),若\(A\subsetneqq B\),求实数\(m\)的取值范围。分析:自行画出草图可知,先列出条件\(\begin{cases}&m+1\leq-2\\...
转载
发布博客 2019.08.22 ·
618 阅读 ·
0 点赞 ·
0 评论

从三点共线到四点共面

前言请注意其中的类比思维的学习方式。三点共线初中使用,距离表示形式:\(|AB|+|BC|=|AC|\)高中使用,斜率表示形式:\(k_{AB}=k_{AC}\)高中使用向量表示形式:\(\overrightarrow{OC}=\lambda\overrightarrow{OA}+(1-\lambda)\overrightarrow{OB}\) 或\(\overright...
转载
发布博客 2019.09.08 ·
509 阅读 ·
1 点赞 ·
0 评论

配凑法

前言配凑法也是高中数学中比较常用的一种数学方法。使用场景为了将分式函数化简,使用配凑法;为了使用均值不等式,使用配凑法;典例剖析例1【配凑和为定值,为使用均值不等式】已知\(x,y>0\),\(2x+3y=4\),求\(xy\)的最大值;法1:\(xy=\cfrac{6xy}{6}=\cfrac{(2x)\cdot (3y)}{6}\leq \cfrac{1}...
转载
发布博客 2019.08.12 ·
1206 阅读 ·
0 点赞 ·
0 评论

三点共线的向量刻画

前言在数学中,三点共线的给出方式有以下几种: 其中向量的表示形式比较难理解,以下用图形帮助我们理解;向量表示形式:\(\overrightarrow{OC}=\lambda\overrightarrow{OA}+(1-\lambda)\overrightarrow{OB}\) 或\(\overrightarrow{AB}=k\cdot \overrightarrow{AC}\)距...
转载
发布博客 2019.08.30 ·
312 阅读 ·
0 点赞 ·
0 评论

求参数的取值范围

前言求参数的取值范围,是高中数学中非常普遍的一类题目,现作以总结整理。、集合例1已知集合\(A=\{x\mid -2\leq x\leq 7\}\),集合\(B=\{x\mid m+1< x<2m-1 \}\),若\(B\subseteq A\),则实数\(m\)的取值范围是什么?分析:集合\(A\)为定集,集合\(B\)为动集,又因为出现了条件\(B\subse...
转载
发布博客 2019.08.10 ·
1516 阅读 ·
0 点赞 ·
0 评论

高频易错00

前言持续整理中......书写错误\(3\times -1=-3\),应该是\(3\times (-1)=-3\); \(\cfrac{1}{2}\)的\(3\)次方应该写成\((\cfrac{1}{2})^3=\cfrac{1}{8}\);参数取值范围应该是\(a\in(-\infty,-1]\cup \{1\}\),错误的写为\(a\in(-\infty,-1]\cup...
转载
发布博客 2019.08.12 ·
83 阅读 ·
0 点赞 ·
0 评论

双连不等式

前言相关概念形如\(2<2x+1<3\)的不等式,我们就称之为双连不等式。求解双联不等式的的方法一,利用不等式的性质求解,给双连不等式的左、中、右同时减去\(1\),得到\(1<2x<2\),然后同时除以\(2\),得到\(\cfrac{1}{2}<x<1\);方法二,转化为不等式组求解,如\(\left\{\begin{array}{l}{...
转载
发布博客 2019.08.10 ·
547 阅读 ·
0 点赞 ·
0 评论

直线的倾斜角斜率和直线方程

前言更新时间:2019-08-05倾斜角斜率直线的倾斜角的范围\(\theta\in [0,\pi)\);直线方程典例剖析直线的方向向量例1与直线\(3x+4y+5=0\)的方向向量共线的一个单位向量是【】$A.(3,4)$ $B.(4,-3)$ $C.(\cfrac{3}{5},\cfrac{4}{5})$ $D.(\cfrac{4}{5},-\cfra...
转载
发布博客 2019.08.05 ·
444 阅读 ·
0 点赞 ·
0 评论

十字相乘法

前言案例解释以二次三项式\(2x^2+3x-2\)的分解为例,先将二次项的系数\(2\)进行分解\(2\times 1\),再将常数项\(-2\)进行分解\(-2\times 1\),然后分别竖行书写,交叉相乘再相加,若其和等于一次项的系数,则分解成功;若其和不等于一次项的系数,则分解不成功,需要调整前边的分解位置。具体解释如下:比如书写为\(_1^2\) \(\times\) \...
转载
发布博客 2019.08.06 ·
349 阅读 ·
0 点赞 ·
0 评论

圆锥曲线的定值定点问题

前言例说运算圆锥曲线中的定值定点问题的运算往往少不了以下的过程。将直线\(y=kx+2\)代入圆锥曲线\(\cfrac{x^2}{4}+\cfrac{y^2}{3}=1\)的代入运算过程,可以如下简化:先将圆锥曲线整理为\(3x^2+4y^2-12=0\),然后这样在演草纸上书写,注意对齐书写,一次运算过\(\left\{\begin{array}{l}{3x^2}\\{4...
转载
发布博客 2019.07.30 ·
1361 阅读 ·
0 点赞 ·
0 评论

直线和圆锥曲线的位置关系

前言圆锥曲线一般指椭圆、双曲线、抛物线;但由于圆和椭圆有近亲关系,都是封闭曲线,且椭圆的两个焦点合二为一时,椭圆就变成了圆;双曲线和抛物线都是非封闭曲线,这两个和前两个的区别就挺大了。基础知识直线\(l\)和圆锥曲线\(C\)的位置关系1、从几何角度看,直线\(l\)和圆锥曲线\(C\)的位置关系可以分为三类:①无公共点;②仅有一个公共点;③有两个相异的公共点;2、...
转载
发布博客 2019.07.29 ·
868 阅读 ·
1 点赞 ·
0 评论

配方法新说

前言使用公式注意,平时使用正用公式\((a\pm b)^2=a^2\mp 2ab+b^2\),目的是将完全平方式展开,便于下一步合并计算;但涉及到配方法时,却是逆用刚才的公式,\(a^2\mp 2ab+b^2=(a\pm b)^2\),目的是找到函数的对称轴,便于判断其单调性等,由于使用的目的不一样,故公式的使用方向也就不一样。案例说明例将二次函数配方:\(f(x)=-2x^...
转载
发布博客 2019.08.03 ·
140 阅读 ·
0 点赞 ·
0 评论
加载更多