【Stable Diffusion】图片高清化+面部修复+一键抠图,一些你不知道的事儿

说到后期处理板块,大家第一印象就是图像放大,快速且高效。但是今天要讲的后期处理当中,肯定还有一些是你不知道的事儿。

# 放大算法

首先是关于放大算法,如果大家用的都是秋叶大佬的整合包的话,算法总共应该就是这些。常用的就是“R-ESRGAN 4x+”做写实图片,“R-ESRGAN 4x+ Anime6B”做二次元图片。

但是经常去C站,copy一些别人的作品却老是发现他们用的放大算法是什么“4x-UltraSharp”之类的高级货。

那就是因为,这些高端的放大算法,你还没下载。

所以,我在这里整理了四款更厉害的放大算法,分别是:“4x-UltraSharp”、“8x_NMKD-Superscale_150000_G”、“8x_NMKD-Typescale_175k”、“16xPSNR”。并将它们放在了云盘里,大家下载之后,将这四款放大算法放入“……\sd-webui-aki-v4.2\models\ESRGAN”这个路径之中,然后重启软件。

就可以看到这四款新的放大算法了。

我们以这张图作为例子来测试一下,这张图片现在分辨率是512*512。

我将这张图发送到后期处理,分别使用一个传统算法“Lanczos”、一个常用算法“R-ESRGAN 4x+ Anime6B”,和刚才下载的四个算法做一个对比。

图片太小,大家可能看不清细节,我直接来做一下总结。

传统放大算法Lanczos对原图没有任何优化,仅仅只是放大像素,直接pass。

曾经的王者“R-ESRGAN 4x+ Anime6B”表现蛮好的,放大之后,图片有了更多的细节和更清晰的轮廓。

但是和新晋放大器“4x-UltraSharp”比起来,还是弱了一些,“4x-UltraSharp”拥有更清晰的细节,而且没有过度锐化的部分。

随着前面数字的增加,8x、16x系列的放大器,拥有了更真实的处理细节,不仅仅只追求把人物还原得光滑好看,而是增加了很多噪点和毛孔细节,让人物看起来更加真实可信。

这四个新算法呢,正常情况下推荐“4x-UltraSharp”效果相当好,“8x_NMKD-Superscale_150000_G”色调相当偏冷一些,“8x_NMKD-Typescale_175k”,比4x的放大器皮肤噪点更多,如何取舍就取决于你需要多高的真实度了,至于“16xPSNR”,生图速度有点慢,效果相对于8x而言没有明显提升,不建议使用。

# 面部修复

我们接着来看一下这个GFPGAN面部修复,我找一张模糊人像来修复一下。

其他参数不变,直接将GFPGAN参数拉到1,就可以了。

看一下面部修复效果,宛如重生。当然这个功能只能修复脸部,所以头发、衣服、背景等没有变化。

# 背景去除

这个功能需要再安装一个插件REMBG,安装地址是https://github.com/AUTOMATIC1111/stable-diffusion-webui-rembg.git 。

安装好之后重启,就有这个选项框了。

使用这张图测试一下,模型就选第一个u2net,直接点击生成。

抠图效果还是蛮不错的,边缘轮廓有些黑边,用时2.86秒。

如何去掉这个黑边呢,需要点击后面的Alpha matting,来调整一些参数。它们分别控制抠图边缘尺寸,前景阈值、背景阈值。

通过一系列测试,推荐给大家一套比较通用的参数设置——Erode size:6、Foreground threshold:143、Background threshold:187。

通过这个参数,我们就能一键得到没有黑边的图像了。

另外,点击这个按钮,还可以直接生成蒙版。

这里还有一个专门做服装抠图的模型,可以一键识别出模特的服装。

这就非常方便我们做换装的处理了。

还有一个专门给动漫抠图的模型。

我们使用这张图测试一下。

抠图效果还是可以的,可能是背景比较复杂,用时19秒。

关于后期处理里面的一些冷僻小知识就介绍到这里了,如果想要这个插件的话,文末扫码即可获取!

写在最后

AIGC技术的未来发展前景广阔,随着人工智能技术的不断发展,AIGC技术也将不断提高。未来,AIGC技术将在游戏和计算领域得到更广泛的应用,使游戏和计算系统具有更高效、更智能、更灵活的特性。同时,AIGC技术也将与人工智能技术紧密结合,在更多的领域得到广泛应用,对程序员来说影响至关重要。未来,AIGC技术将继续得到提高,同时也将与人工智能技术紧密结合,在更多的领域得到广泛应用。

感兴趣的小伙伴,赠送全套AIGC学习资料和安装工具,包含AI绘画、AI人工智能等前沿科技教程,模型插件,具体看下方。

一、AIGC所有方向的学习路线

AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

在这里插入图片描述

在这里插入图片描述

二、AIGC必备工具

工具都帮大家整理好了,安装就可直接上手!
在这里插入图片描述

三、最新AIGC学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
在这里插入图片描述
在这里插入图片描述

四、AIGC视频教程合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

若有侵权,请联系删除
<think>嗯,用户想安装Stable Diffusion的DPM++ 2M Karras采样器。首先,我需要确认用户使用的是哪个平台,比如Automatic1111的WebUI还是ComfyUI。因为同的平台安装步骤可能同。 根据引用[4],Stable Diffusion的采样器通常集成在WebUI中,比如Automatic1111的版本。所以可能用户需要先确认他们的WebUI版本是否已经包含这个采样器。如果已经更新到最新版,可能DPM++ 2M Karras已经存在了。比如引用[1]提到DPM++2M Karras是其中一个系列,可能属于内置的采样器。 那用户可能需要先更新他们的WebUI。步骤大概是进入安装目录,运行git pull命令。如果有扩展管理器的话,可能还需要更新扩展。过,如果DPM++ 2M Karras属于核心的一部分,可能需要额外安装,只需要确认版本是否支持。 另外,引用[3]提到DPM-Solver++需要高阶求解器,可能某些实现需要额外的依赖库,比如xformers或者CUDA工具包。用户可能需要安装这些依赖项,但如果是通过WebUI安装的话,可能已经包含这些了。 也有可能用户遇到问题,比如采样器没有显示出来,这时候需要检查日志或者重新安装依赖。或者,如果是自定义的采样器,可能需要从GitHub下载代码,但根据引用[4],DPM++系列可能已经集成在主流UI中,需要额外安装。 总结步骤应该是:1. 更新WebUI到最新版;2. 检查可用采样器列表;3. 如果找到,可能检查扩展或重新安装依赖;4. 测试采样器是否正常工作。同时,注意用户是否需要特定的配置,比如Karras调度器,这在引用[2]中提到可能需要选择正确的调度方式。</think>### Stable Diffusion DPM++ 2M Karras 采样器安装指南 #### 1. 确认基础环境 - **Stable Diffusion WebUI 版本**:DPM++ 2M Karras 采样器通常集成在主流 WebUI 中(如 **Automatic1111** 或 **ComfyUI**)。需确保 WebUI 已更新至最新版本[^3][^4]。 - **依赖库检查**:若使用原生代码库,需安装 `xformers` 和 `torch` 等依赖,可通过以下命令更新: ```bash pip install -U xformers torch ``` #### 2. 安装/更新步骤 - **Automatic1111 WebUI**: 1. 进入 WebUI 根目录,运行更新命令: ```bash git pull ``` 2. 若使用扩展管理器,更新所有扩展: ```bash ./webui.sh --update-all-extensions ``` 3. 重启 WebUI,在采样器下拉菜单中检查是否出现 `DPM++ 2M Karras`[^1][^4]。 - **ComfyUI**: 1. 通过 `Manager` 更新自定义节点: ```bash git clone https://github.com/comfyanonymous/ComfyUI ``` 2. 安装 `DPM-Solver++` 相关节点(若需手动集成)。 #### 3. 验证与使用 - **采样器调用**:在生成图像的参数设置中,选择 `DPM++ 2M Karras`,建议参数: ```python { "steps": 20, # 推荐15-20步 "cfg_scale": 7.5, # 引导尺度(参考引用[3]) "scheduler": "karras" # Karras调度器[^2] } ``` - **性能测试**:生成图像时观察显存占用与速度,若出现异常可尝试 `--no-half` 启动参数。 #### 4. 常见问题解决 - **采样器未显示**:检查 WebUI 版本是否≥1.6.0,或尝试重装 `k-diffusion` 库: ```bash pip install -U k-diffusion ``` - **显存足**:降低图像分辨率或启用 `--medvram` 模式。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值