下图点击放大
正面 Tag(想要的内容)是这些,改善画质用的 Tag:
masterpiece, best quality,
通用反面 Tag(不想要的内容),保底不出古神用的 Tag:
lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry
整合包内一般都会带一个自动补全 Tag 的插件,如果你不知道那些 Tag 好,可以使用标签超市
https://tags.novelai.dev/
另外,你可能会看到别人发的 Tag 里面会有一些符号?比如大小括号等等。这属于进阶用法,这里仅仅简单提及一下。以 girl 这个 Tag 作为例子。
(girl) 加权重,这里是1.1倍。括号是可以叠加的,如((girl)) 加很多权重。1.1*1.1=1.21倍
[girl] 减权重,一般用的少。减权重也一般就用下面的指定倍数。
(girl:1.5) 指定倍数,这里是1.5倍的权重。还可以 (girl:0.9) 达到减权重的效果
采样步数不需要太大,一般在50以内。通常28是一个不错的值。
采样器没有优劣之分,但是他们速度不同。全看个人喜好。推荐的是图中圈出来的几个,速度效果都不错
提示词相关性代表你输入的 Tag 对画面的引导程度有多大,可以理解为 “越小AI越自由发挥”
太大会出现锐化、线条变粗的效果。太小AI就自由发挥了,不看 Tag
随机种子是生成过程中所有随机性的源头 每个种子都是一幅不一样的画。默认的 -1 是代表每次都换一个随机种子。由随机种子,生成了随机的噪声图,再交给AI进行画出来。
写在最后
AIGC技术的未来发展前景广阔,随着人工智能技术的不断发展,AIGC技术也将不断提高。未来,AIGC技术将在游戏和计算领域得到更广泛的应用,使游戏和计算系统具有更高效、更智能、更灵活的特性。同时,AIGC技术也将与人工智能技术紧密结合,在更多的领域得到广泛应用,对程序员来说影响至关重要。未来,AIGC技术将继续得到提高,同时也将与人工智能技术紧密结合,在更多的领域得到广泛应用。
感兴趣的小伙伴,赠送全套AIGC学习资料和安装工具,包含AI绘画、AI人工智能等前沿科技教程,模型插件,具体看下方。
一、AIGC所有方向的学习路线
AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。
二、AIGC必备工具
工具都帮大家整理好了,安装就可直接上手!
三、最新AIGC学习笔记
当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
四、AIGC视频教程合集
观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
五、实战案例
纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
