文 / 宗福季教授
在质量4.0发展下,工业大数据隐含着众多的机遇。我们可以在数字化转型的趋势下对许多旧方法进行改良。6 Sigma是80年代末进行质量管理的一个很常用的工具,里面有很多手法是统计工具。虽然它是80年代末发展出来的工具,但是它仍然是非常有效的。然而其中有一些工具是需要加以更新的。比如,DMAIC方法是6 Sigma管理中流程改善的工具,其中有很多步骤可以根据现代技术的发展加以更新。DMAIC方法主要包含如下五个阶段:
1. 定义阶段(Define):在该阶段我们定义需要解决的问题。有時找出,厘清,确认真正的问题,比如何解决更重要。
2. 测量阶段(Measure):在该阶段我们对数据进行收集。在数据收集阶段并不是一开始直接进行数据收集,而是需要我们花费大量精力决定收集什么数据。在大数据时代我们有很多方法可以获得海量且各式各样的数据,如传感器数据、不同数据库的数据等等。但是,我们并不是盲目收集所有可以获得的数据,而是需要收集与我们目标密切相关的数据。
3. 分析阶段(Analyze):在该阶段我们通过数据分析方法找到影响产品质量的关键参数。在质量4.0时代,我们的工具可以因为机器学习技术的发展而有高度提升,比如使用愈发强大的Python和R 软件。我们可以各取所长,从而使得建模方法更加多样。
4. 改善阶段(Improvement):在该阶段我们寻找优化生产的方法,使得流程缺陷降低到最小程度。在质量4.0下,除了根据以前一些工具进行改善之外,重点是流程的智能化。我们现在的目标并不在于解决某一个问题,而是当再遇到这类问题时我们可以做到某种程度的智能化,以减少人的反复参与。这也是目前的一个研究方向。
5. 控制阶段(Control):在该阶段我们使改进后的流程程序化,并通过有效的监测手段,如控制图等,确保流程改进的结果可持续进行。在质量4.0下,我们可以在该阶段利用许多改进的可视化工具。
采集数据、分析数据并不意味着问题的完全解决,帮助客户完成决策才是最终目的,为了实现数据的实际应用需要拥有提升质量的创新工具。一为突破式创新,运用创意解决问题,要求要有同理心,需要以人为本的设计,通过观察、采访,发现用户深层次的需求,对问题重新做深入的定义,需要发散思维,提出众多解决方案,将一个好的创意点子用具体的原型来呈现,将原型通过情景模拟来测试可用性。二为渐进式创新,运用统计思维解决问题不是从无到有,而是从好到更好,不是从零开始,而是有数据作基础来创新,根据定义、测量、分析、改善、控制这个流程以严谨的数据驱动和以客户为中心的方法,采用系统方法提高绩效和减少对客户至关重要的缺陷。
在工业大数据的框架下,我们根据对数据的运用程度将工业大数据分析与应用分成了9个层次:
▪Level 1. 不用数据,只依赖经验,比如制衣业早期;
▪Level 2. 收集数据,但只研究数据本身;
▪Level 3. 将收集的数据用图表进行展示;
▪Level 4. 收集普查数据并进行描述性统计分析;
▪Level 5. 收集抽样数据并进行描述性统计分析;
▪Level 6. 收集抽样数据并进行推断性统计分析;
▪Level 7. 收集实时异构传感器数据并进行描述性统计分析与可视化;
▪Level 8. 收集实时异构传感器数据并进行推断性统计分析,给出决策建议;
▪Level 9. 使用工业人工智能的自主过程控制,将数据分析阶段智能化,减少人为参与。
需要说明的是以上九个层次并不是按照从差到好的顺序进行排序的。比如有一些日本百年老店,他们完全不用数据,而是靠自己的手艺打败全世界。当然他们不使用数据也有一些缺陷,比如他们很难在没有数据支撑下去别的城市开分店。从Level 2到Level 3层次涉及到了数据的可视化,这是一个很大的进步。大家可能觉得单看数据与单看图是一回事情,但是其实是很不一样的。人的眼睛比较难以接受数据,比较容易接受色彩跟图案。因此,人直接看数字和看一幅图的记忆点是完全不一样的。目前数据的可视化已经形成一门学科。由于人只能看到2D的图表,所以早期的可视化只是画一些简单的图。而在大数据时代数据维度非常高,如何将高维实时数据进行可视化是很重要的一个课题。
此外,在质量4.0框架下(Level 7-9),我们可以获得海量实时异构传感器数据。这些工业数据往往是基于传感器的高频率采样获得,并且形式多样,不仅仅只是连续型数据,还包含文字、图像、声音等等多种类型数据。如何应用实时异构传感器数据进行统计分析、机器学习、模型建立,并最终给出决策建议是质量4.0不可绕过的一个议题。
真正的工业大数据分析,必须要做到统计推断和统计预测,要建立模型,要能够预测未来的事情,或者是描述推断,其中的确定性、不确定性,都要进行分析,因此,描述性统计跟统计推断是不同级别的事情。随着大数据时代到来,采集数据的传感器价格越来越便宜,快速采集数据不成难事,如何使用实时的传感器数据并描述性地总结、可视化是工业大数据的第7层级,目前大部分的公司还停留在第7层级。第8层级是使用实时的传感器数据并建立统计模型,进行推断、预测并用于决策,这是目前大部分人都希望实现的。我们对数据的运用最终目的是达到Level 9,即使用工业人工智能的自主过程控制。也就是说在之前的例子中使用数据分析帮助商业决策还不是终点,而如何在下次进行同样决策时,在无人力介入下,自动给出智能决策建议是我们想要达成的目标。
从以上所讲的内容中我们可以发现,在质量4.0发展中,我们面临着许多机遇。而工业大数据隐含着的机遇具有两面性:一方面许多工具以前就已经有了,由于在数据不复杂时并不需要使用机器学习以及统计建模这些工具,大家对他们并不是很重视。例如神经网络虽然提出的很早,但是当时没有适用的数据。因此,单有方法没有数据是没有意义的;另一方面,只有数据没有方法也是不行的。现在,我们可以收集到大量实时传感器数据,但如果没有方法一样无法分析建模,这些数据仍然不能被完全应用。例如,在前面提到的实例中,目前我们所采集到的数据只能做到可视化,并没有发挥数据的全部作用。如今我们处于数字化转型的机遇下,数据能够被轻易采集,用于分析预测数据的工具也很多。在DMAIC方法中的测量、分析、改善、控制阶段,我们可以在如下方面将机器学习与统计建模相结合,对质量数据进行分析建模:
▪测量阶段:利用分布式传感器系统进行实时数据收集,也包括对机器运行和数据维护,环境数据等类型数据收集以及异构数据融合与可视化;基于物联网的质量数据整合,分析,与监控。
▪分析阶段:对数据进行描述、诊断与预测;使用机器学习建立过程变量与产品质量之间的关系;强化隐形因素,关联性,和因果性的挖掘。
▪改善阶段:根据分析结果提出过程实时优化方案;过程变量的智能动态调整;自适应检测。
▪控制阶段:基于大数据流的实时过程监测、跟踪、警报;基于人工智能的异常检测,实现智能决策辅助及反馈闭环。
工业大数据是信息量丰富的资源,同时,分析数据才能指导人们更好地决策。因此,运用数据分析技术统计学习与机器学习很有必要,采集数据并建模,分析哪些特定的预测因子(X)实际影响了回应(Y),属于正相关还是负相关关系,简单的线性关系还是复杂关系。如今,大数据发展迅猛、传感器数据到位、系统整合成为可能,系统整合之后才能进行分析,而这些分析又可以借助机器学习。以前做不到数据实时地收集,现在可以做得到。在数据分析、质量提升、质量控制等方面现在都有提升,以前可能只是停留在学术论文层面,现在技术到位了,以前的学术研究到实践应用时间周期比较长,而现在这个时间变得比较短了,一些学术研究将可以很快在质量4.0中得到应用。
(未完待续,敬请期待)
*部分内容已刊登 Tsung, F., "The Application of Industrial Big Data in Quality Innovation in the Context of Digital Transformation", Journal of Macro-Quality Research, Vol. 9, No. 3, 2021.
(图片来源:Pexels、Pixabay、Fotor懒设计)
宗福季教授简介
宗福季教授现任香港科技大学讲座教授, 香港科技大学(广州)信息枢纽署理院长。宗教授于密歇根大学获工业工程硕士及博士学位。曾任香港科技大学工业工程与决策分析系系主任, 及质量与大数据分析实验室主任。目前是国际质量科学院(IAQ)院士,美国统计学会(ASA)会士, 美国工业工程师学会(IISE)会士,美国质量学会(ASQ)会士,国际统计协会(ISI)当选会员,香港工程师学会 (HKIE)会士。另外宗教授是美国质量学会旗舰期刊 Journal of Quality Technology (JQT) 的前主编, 工业工程学会期刊 IISE Transactions 及Technometrics 的副编辑。宗教授在工业大数据及质量控制领域有着广泛而深入的研究,并积极参与有关质量改善和管理的教育及研究工作。
宗教授的主要研究方向为:工业大数据,包括运用统计学习,机器学习,异常检测等方法研究涉及传统制造,新型制造,物联网,公共服务,金融等领域的工业大数据;此外,宗教授在质量分析、统计过程控制、监控和诊断领域有卓越成就。宗教授在重要学术刊物上发表论文150余篇,并分别于2004年,2009年和2018年三度获得 IISE Transactions 的最佳论文奖。
更多详情
01
教授专栏10| 宗福季:从加速数字化转型,到建设质量强国[Part I 源起]
由香港科技大学主理出品的【教授专栏】,汇集来自不同领域教授的学术成果、前沿论断及知识科普,用最新鲜的视角解读社会动态,以最前沿的角度解释科技奥秘。期待通过香港科技大学的平台,聚合更多新锐观点,打造出一期又一期生动又深刻的【教授专栏】!
-end-