ZJYYCOJ-好基友

题目链接: http://acm.oinsm.com/problem.php?cid=1022&pid=4

在这里插入图片描述

解题思路

偷懒,我就直接 引用官方题解了
解题思路:该题解题思路有多种,并查集以及贪心皆可以 AC。

(1)贪心思路:
根据我们的假设,可以制定按顺序让每张沙发上基友开心的策略。
对于每张沙发,找到沙发上第一个人的基友,如果不在同一个沙发
上,就把沙发上的第二人换成第一个人的基友。

如果一个人的编号为 x,那么他的基友的编号为 x ^ 1, ^ 在这里
是异或操作。对于每张沙发上的第一个人 x = row[i],找到他们的
同伴所在的位置 row[j],将 row[j] 和 row[i + 1] 互相交换。

(2)并查集思路:
我们设想一下加入有两对基友互相坐错了位置,我们至多只需要换
一次。
如果三对基友相互坐错了位置,A1+B2,B1+C2,C1+A2。他们三个之
间形成了一个环,我们只需要交换两次。
如果四队基友相互坐错了位置,即这四对基友不与其他基友坐在一
起,A1+B2,B1+C2,C1+D2,D1+A2.他们四个之间形成了一个环,他们
只需要交换三次并且不用和其他基友交换,就可以将这四对基友交
换好,
以此类推,其实就是假设 k 对基友形成一个环状的错误链,我们只
需要交换 k - 1 次就可以将这 k 对基友的位置排好。
所以问题转化成 N 对基友中,有几个这样的错误环。
我们可以使用并查集来处理,每次遍历相邻的两个位置,如果他们
本来就是基友,他们处于大小为 1 的错误环中,只需要交换 0 次。
如果不是基友,说明他们呢两对处在同一个错误环中,我们将他们
合并(union),将所有的错坐基友合并和后,答案就是基友对 -
环个数。
这也说明,最差的情况就是所有 N 对基友都在一个环中,这时候我
们需要 N - 1 调换。
最好情况每对基友已经坐好了,已经有 N 个大小为 1 的环,这时候
我们需要 N - N 次调换。

代码

  • 贪心
#include<bits/stdc++.h>
using namespace std;
const int MAXN = 200005;
const int INF = 1e9;
int n;
int num[MAXN];
int vis[MAXN];
int main()
{
    ios::sync_with_stdio(false);
    while(cin >> n){
        for(int i = 1; i <= n * 2; i++){
            cin >> num[i];
            vis[num[i]] = i;
        }
        int sum = 0;
        for(int i = 1; i <= 2 * n; i += 2){
            if((num[i] ^ num[i + 1]) != 1) {
                sum++;
//                cout << num[i] << " " << num[i + 1] << endl;
                int tmp = num[i + 1];
                swap(num[i + 1], num[vis[num[i] ^ 1]]);
                vis[tmp] = vis[num[i] ^ 1];
                vis[num[i] ^ 1] = i + 1;
//                cout << num[i] << " " << num[i + 1] << endl;
            }
        }

        cout << sum << endl;
    }
    return 0;
}
  • 并查集
#include<bits/stdc++.h>
using namespace std;
const int MAXN = 200005;
const int INF = 1e9;
int n;
int num[MAXN];
int vis[MAXN];
int ans[MAXN];
int findx(int x) {
    int r = x, tmp;
    while(r != vis[r]) {
        r = vis[r];
    }
    int k = x;
    while(k != vis[k]) {
        tmp = vis[k];
        vis[k] = r;
        k = tmp;
    }

    return r;
}
void marge(int x, int y) {
    int fx = findx(x);
    int fy = findx(y);
    if(fx != fy) {
        vis[fx] = fy;
    }
}
int main()
{
    ios::sync_with_stdio(false);
    while(cin >> n){
        for(int i = 0; i <= 2 * n; i++){
            vis[i] = i;
            ans[i] = 0;
        }
        for(int i = 1; i <= n * 2; i++){
            cin >> num[i];
        }
        for(int i = 1; i <= 2 * n; i += 2){
            marge(i - 1, i);
            if((num[i] ^ num[i + 1]) != 1) {
                marge(num[i], num[i + 1]);
//                marge(num[i], num[i] ^ 1);
            }
        }
        int sum = 0;
        for(int i = 0; i < 2 * n; i++){
            ans[findx(i)]++;
        }
        for(int i = 0; i < 2 * n; i++){
//             cout << i << " : " << ans[i] << endl;
            if(ans[i] > 1) sum++;
        }

        cout << n - sum << endl;

    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值