OpenCV用不同的方法截取ROI区域(python)

本文介绍了三种使用OpenCV在Python环境中截取图像感兴趣区域(ROI)的方法。第一种方法通过`selectROI`函数直接选取ROI;第二种方法同样利用`selectROI`,但更直观地显示矩形选择过程;第三种方法通过监听鼠标事件动态绘制ROI,提供更好的用户交互体验。代码中详细注释了每一步操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

用不同的方法截取ROI区域

前言

任务

第一种

话不多说,注释详细写在代码当中

import cv2 
src = cv2.imread('pic.jpg')
src = cv2.resize(src, (0,0), fx=1.2, fy=1.2)#水平轴与垂直轴上的比例因子,我给它拉大了1.2倍
print("--------- HL截取ROI区域的测试 ---------")
print("鼠标选择ROI,然后点击 enter键")
r = cv2.selectROI('org', src, False)  # ,返回 (x_min, y_min, w, h)

# roi区域
roi = src[int(r[1]):int(r[1]+r[3]), int(r[0]):int(r[0]+r[2])]
cv2.destroyAllWindows()
cv2.imshow('ROI',roi)#显示ROI区域

k = cv2.waitKey(0) & 0xFF
if k == 27: # 按Esc 键即可退出
    cv2.destroyAllWindows()

ROI
截取后ROI

第二种

import numpy as np
import cv2 
src=cv2.imread('pic.jpg')
cv2.namedWindow('roi',cv2.WINDOW_AUTOSIZE)
print("--------- HL截取ROI区域的测试 ---------")
print("鼠标选择ROI,然后点击 enter键")
roi=cv2.selectROI(windowName="roi",img=src,showCrosshair=True,fromCenter=False)
x,y,w,h=roi
cv2.rectangle(img=src,pt1=(x,y),pt2=(x+w,y+h),color=(0,0,255),thickness=2)
img=src[y:y+h,x:x+w]
cv2.destroyAllWindows()
cv2.imshow('ROI',img)

k = cv2.waitKey(0) & 0xFF
if k == 27: # 按esc 键即可退出
    cv2.destroyAllWindows()

roi
roi

第二种(修正)

修正
被组织发现我第二种方法是投机取巧 滥竽充数了
经过再次了解,修正方法如下:

import cv2
def on_mouse(event, x, y, flags, param):
    global img, click, slip    #定义局部变量全局可用
    img2 = img.copy()          #将原图复制copy一份给我处理
    if event == cv2.EVENT_LBUTTONDOWN:   #库函数————左键点击
        click = (x,y)             #定义一个参数存放点击的坐标
        cv2.circle(img2, click, 5, (255,255,0), 5)  #点的时候显示一个小点即圆点供用户交互
        cv2.imshow('pic', img2)
    elif event == cv2.EVENT_MOUSEMOVE and (flags & cv2.EVENT_FLAG_LBUTTON):   #鼠标按住左键拖曳
        cv2.rectangle(img2, click, (x,y), (0,125,255), 5)#上一步记录的坐标点作为起点,用户拖拽轨迹点为终点画矩形框
        cv2.imshow('pic', img2)
    elif event == cv2.EVENT_LBUTTONUP:  #当鼠标左键释放时
        slip = (x,y)
        cv2.rectangle(img2, click, slip, (0,0,255), 5) 
        cv2.imshow('pic', img2)
        min_x = min(click[0],slip[0])     
        min_y = min(click[1],slip[1])
        width = abs(click[0] - slip[0])
        height = abs(click[1] -slip[1])
        roi = img[min_y:min_y+height, min_x:min_x+width]#提取此时的ROI区域
        cv2.destroyAllWindows()
        cv2.imshow('ROI', roi)

img = cv2.imread('pic.jpg')
print("--------- HL截取ROI区域的测试 ---------")
cv2.namedWindow('pic')
cv2.setMouseCallback('pic', on_mouse)
cv2.imshow('pic', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

将注释都放在代码中了
运行结果
在这里插入图片描述
在这里插入图片描述

### 回答1: 使用 OpenCVPython截取图片区域方法如下: 1. 读入图片: ``` import cv2 img = cv2.imread("image.jpg") ``` 2. 获取图片的 ROI(感兴趣的区域): ``` roi = img[y:y+h, x:x+w] ``` 其中,(x,y)ROI 左上角的坐标,w 是 ROI 宽度,h 是 ROI 高度。 3. 保存 ROI: ``` cv2.imwrite("roi.jpg", roi) ``` 完整代码如下: ``` import cv2 img = cv2.imread("image.jpg") roi = img[y:y+h, x:x+w] cv2.imwrite("roi.jpg", roi) ``` ### 回答2OpenCV是一个强大的计算机视觉库,可用于处理图像和视频。在使用OpenCV处理图像时,可能需要截取图像的某个区域,以便进行进一步处理。在Python中,可以使用OpenCVcv2库来实现此目的。 要截取图像的某个区域,首先需要确定区域的位置和大小。像素位置以左上角为原点,向右和向下递增为正方向。可以使用cv2库的切片功能来裁剪图像。 在截取区域之前,需要加载图像。可以使用cv2.imread()函数来加载图像,该函数需要传入图像的文件路径。 代码示例: import cv2 # 加载图像 img = cv2.imread('image.jpg') # 截取图像的区域,x、y为左上角的像素位置,w、h分别为宽度和高度 x, y, w, h = 200, 100, 300, 200 roi = img[y:y+h, x:x+w] # 显示截取区域 cv2.imshow('ROI', roi) cv2.waitKey(0) 在上面的代码中,首先加载了名为“image.jpg”的图像。然后,将要截取区域的左上角像素位置设置为(x, y),宽度和高度分别设置为w和h。最后,使用切片功能将图像的区域裁剪出来,并使用cv2.imshow()函数显示结果。 需要注意的是,在这个示例中,左上角像素的位置是(200, 100),而不是(100, 200),这是因为在OpenCV中,像素位置以左上角为原点,向右和向下递增为正方向。 除了使用切片功能截取图像区域外,还可以使用cv2.rectangle()函数绘制矩形框,并使用cv2.imshow()函数显示整个图像。这种方法不需要裁剪图像,但可以给出所需区域的位置和大小。 代码示例: import cv2 # 加载图像 img = cv2.imread('image.jpg') # 绘制矩形框 x, y, w, h = 200, 100, 300, 200 cv2.rectangle(img, (x, y), (x+w, y+h), (0, 255, 0), 2) # 显示整个图像 cv2.imshow('Image', img) cv2.waitKey(0) 在上面的代码中,使用cv2.rectangle()函数绘制了一个矩形框,该函数需要传入4个参数:左上角像素的位置、右下角像素的位置、框的颜色和线宽。最后,使用cv2.imshow()函数显示整个图像,并等待用户按下任意键。 总的来说,使用OpenCV截取图像区域需要注意像素位置的坐标系、切片功能和绘制矩形框等方面的技巧。掌握这些技巧后,可以轻松地处理图像并进一步进行计算机视觉任务。 ### 回答3: OpenCV是一个开源的计算机视觉库,可以用于图像处理、图像分析、数字图像处理等领域。在Python中使用OpenCV截取图像区域可以通过以下步骤实现: 1. 导入OpenCV模块和图像: ``` import cv2 img = cv2.imread('image.png') ``` 其中,cv2.imread()函数用于读取图像。 2. 定义要截取的图像区域: ``` x1, y1 = 100, 100 # 左上角坐标 x2, y2 = 300, 300 # 右下角坐标 ``` 这里以左上角坐标(x1,y1)和右下角坐标(x2,y2)表示要截取的矩形区域。 3. 使用OpenCV的图像切片功能(Slicing)截取图像区域: ``` roi = img[y1:y2, x1:x2] ``` 这一步的代码使用了Python的切片语法,截取形成一个矩形区域的图像。 4. 显示截取得到的图像区域: ``` cv2.imshow('ROI', roi) cv2.waitKey() cv2.destroyAllWindows() ``` 这里使用了OpenCV的imshow函数显示截取得到的区域cv2.waitKey()函数等待用户按下任意按键,cv2.destroyAllWindows()用于关闭窗口。 整个代码如下: ``` import cv2 img = cv2.imread('image.png') x1, y1 = 100, 100 # 左上角坐标 x2, y2 = 300, 300 # 右下角坐标 roi = img[y1:y2, x1:x2] cv2.imshow('ROI', roi) cv2.waitKey() cv2.destroyAllWindows() ``` 这样就可以通过Python使用OpenCV截取图像区域了。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值