【跟着SCI学作图】Matplotlib pcolormesh可视化nc数据

【跟着SCI学作图】Matplotlib pcolormesh可视化nc数据

01 引言:

今天接着复现【Future increases in Arctic lightning and fire risk for permafrost carbon】的图表,主要是xarray读取nc数据,然后通过Matplotlib的pcolormesh可视化nc数据。
在这里插入图片描述
论文中提供的数据如下图所示:
请添加图片描述

数据下载地址:
【https://www.nature.com/articles/s41558-021-01011-y#Sec17】

02 代码如下:

# -*- encoding: utf-8 -*-
'''
@File    :   png.py
@Time    :   2023/01/27 21:34:38
@Author  :   HMX 
@Version :   1.0
@Contact :   kzdhb8023@163.com
'''
# here put the import lib

import xarray as xr
import os
import cartopy.crs as ccrs
import cartopy.feature as cfeature
import cmaps
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
from cartopy.mpl.ticker import LatitudeFormatter, LongitudeFormatter
import cmaps

# 字体
size1 = 10.5
fontdict = {'weight': 'bold','size':size1,'color':'k','family':'SimHei'}
mpl.rcParams.update(
    {
    'text.usetex': False,
    'font.family': 'stixgeneral',
    'mathtext.fontset': 'stix',
    "font.family":'serif',
    "font.size": size1,
    "mathtext.fontset":'stix',
    "font.serif": ['Times New Roman'],
    }
    )


# 读取数据
os.chdir(r'E:\CODE\work\plot7\png5\data')
nc = '41558_2021_1011_MOESM14_ESM.nc'
ds = xr.open_dataset(nc)
print(ds)
ds = ds['OTD']


# 可视化
proj=ccrs.PlateCarree()
fig,ax = plt.subplots(1, 1,figsize=(8,4),dpi=100, subplot_kw={'projection': proj})
extent = [-170,-140,55,70]

ax.add_feature(cfeature.COASTLINE.with_scale('110m'), linewidth=0.5, zorder=2,color = 'k')# 添加海岸线
ax.add_feature(cfeature.LAND)#添加陆地
ax.set_extent(extent, crs=ccrs.PlateCarree())
ax.set_xticks(np.arange(extent[0], extent[1] + 1, 10), crs = proj)
ax.set_yticks(np.arange(extent[-2], extent[-1] + 1,5), crs = proj)
ax.xaxis.set_major_formatter(LongitudeFormatter(zero_direction_label=False))
ax.yaxis.set_major_formatter(LatitudeFormatter())

lev=np.arange(0,0.16,0.001)
lon,lat = np.meshgrid(ds['lon'],ds['lat'])
cf=ax.pcolormesh(lon,lat,ds,transform=ccrs.PlateCarree(), cmap=cmaps.MPL_BuPu, vmin=0, vmax=0.15)


# colorbar
plt.subplots_adjust(right=0.84)
ax2 = fig.add_axes([0.875,0.135,0.02,0.72])
b=plt.colorbar(cf,shrink=0.93,orientation='vertical',extend='neither',pad=0.05,aspect=30
,ticks=np.arange(0,0.2,0.05)
,cax=ax2)
b.ax.set_ylabel('OTD FR(#km${^2}$mo${^2}$)')

plt.savefig(r'5.png',dpi = 600)
plt.show()

03 结果如下:

请添加图片描述

以上就是本期推文的全部内容了,如果对你有帮助的话,请‘点赞’、‘收藏’,‘关注’,你们的支持是我更新的动力。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值