【NOI2005】【JZOJ 2413】【BZOJ 1500】维护数列

Description

请写一个程序,要求维护一个数列,支持以下6种操作:(请注意,格式栏中的下划线‘ _ ’表示实际输入文件中的空格)
  1. 插入 INSERT_posi_tot_c1_c2_…_ctot 在当前数列的第posi个数字后插入tot个数字:c1, c2, …, ctot;若在数列首插入,则posi为0
  2. 删除 DELETE_posi_tot 从当前数列的第posi个数字开始连续删除tot个数字
  3. 修改 MAKE-SAME_posi_tot_c 将当前数列的第posi个数字开始的连续tot个数字统一修改为c
  4. 翻转 REVERSE_posi_tot 取出从当前数列的第posi个数字开始的tot个数字,翻转后放入原来的位置
  5. 求和 GET-SUM_posi_tot 计算从当前数列开始的第posi个数字开始的tot个数字的和并输出
  6. 求和最大的子列 MAX-SUM 求出当前数列中和最大的一段子列,并输出最大和

Solution

Spaly模板

Code

#include <iostream>
#include <cstdio>
#include <cstdlib>
#define fo(i,a,b) for(int i=a;i<=b;i++)
#define fod(i,a,b) for(int i=a;i>=b;i--)
#define ch0 ch[0]
#define ch1 ch[1]
using namespace std;
const int N=500500,INF=1047483640;
int read(int &n)
{
    char ch=' ';int q=0,w=1;
    for(;(ch!='-')&&((ch<'0')||(ch>'9'));ch=getchar());
    if(ch=='-')w=-1,ch=getchar();
    for(;ch>='0' && ch<='9';ch=getchar())q=q*10+ch-48;n=q*w;return n;
}
int n,m,ans,root,a0;
struct qqww
{
    int ch[2],fa,v,la,rtt,sum,zc,zcl,zcr,si;
    qqww():fa(N),la(-INF),zc(-INF),zcl(-INF),zcr(-INF){}
}a[N+1];
int zai[N];
void merge(int q)
{
    a[q].sum=a[q].v+a[a[q].ch0].sum+a[a[q].ch1].sum;
    a[q].zc=max(a[q].v,max(a[a[q].ch0].zc,max(a[a[q].ch1].zc,max(a[a[q].ch0].zcr,0)+a[q].v+max(a[a[q].ch1].zcl,0))));
    a[q].zcl=max(a[a[q].ch0].zcl,(a[q].ch0!=N?a[a[q].ch0].sum:0)+a[q].v+max(0,a[a[q].ch1].zcl));
    a[q].zcr=max(a[a[q].ch1].zcr,(a[q].ch1!=N?a[a[q].ch1].sum:0)+a[q].v+max(0,a[a[q].ch0].zcr));
    a[q].si=1+a[a[q].ch0].si+a[a[q].ch1].si;
}
void merge_up(int q){while(q!=N)merge(q),q=a[q].fa;}
void putdown(int q)
{
    if(q==N)return;
    if(a[q].rtt)
    {
        swap(a[q].ch0,a[q].ch1);a[q].rtt=0;
        swap(a[q].zcl,a[q].zcr);
        a[a[q].ch0].rtt=!a[a[q].ch0].rtt;
        a[a[q].ch1].rtt=!a[a[q].ch1].rtt;
        a[N].rtt=0;
    }
    if(a[q].la!=-INF)
    {
        a[q].v=a[q].la;
        a[q].sum=a[q].la*a[q].si;
        a[q].zc=a[q].zcl=a[q].zcr=max(a[q].sum,a[q].v);
        a[a[q].ch0].la=a[a[q].ch1].la=a[q].la;
        a[q].la=-INF;
    }
}
bool KIND(int q){return q==a[a[q].fa].ch0;}
void rotate(int x)
{
    int y=a[x].fa,e=KIND(x);
    a[y].ch[!e]=a[x].ch[e];a[a[x].ch[e]].fa=y;
    if(a[y].fa!=N)a[a[y].fa].ch[y!=a[a[y].fa].ch0]=x;
    a[x].fa=a[y].fa;a[y].fa=x;a[x].ch[e]=y;
    merge(y),merge(x);
}
void Splay(int q,int T)
{
    while(a[q].fa!=T)
    {
        if(a[a[q].fa].fa!=T) 
        {
            if(KIND(q)==KIND(a[q].fa))rotate(a[q].fa);
                else rotate(q);
        }
        rotate(q);
    }
    if(T==N)root=q;
}
int search(int q,int w)
{
    putdown(a[q].ch0),putdown(a[q].ch1);
    if(w<=a[a[q].ch0].si)return search(a[q].ch0,w);
    if(w==a[a[q].ch0].si+1)return q;
    return search(a[q].ch1,w-1-a[a[q].ch0].si);
}
void Insrt(int S,int m)
{
    Splay(search(root,S),N);
//  Splay(search(root,S+1),root);
    S=root;int q;
    fo(i,1,m)
    {
        q=zai[0]?zai[zai[0]--]:++a0;a[q]=a[N-3];
        a[q].fa=S,a[q].ch0=N,a[q].ch1=a[S].ch1;
        a[a[S].ch1].fa=q;a[S].ch1=q;
        read(a[q].v);
        S=q;
    }
    merge_up(S);
}
void D_dfs(int q)
{
    if(a[q].ch0!=N)D_dfs(a[q].ch0);
    if(a[q].ch1!=N)D_dfs(a[q].ch1);
    zai[++zai[0]]=q;
}
void DLT(int l,int r)
{
    Splay(search(root,l-1),N);
    Splay(r=search(root,r+1),root);
    D_dfs(a[r].ch0);
    a[r].ch0=N;
    merge_up(r);
}
void changev(int l,int r,int e)
{
    Splay(search(root,l-1),N);
    Splay(r=search(root,r+1),root);
    a[a[r].ch0].la=e;
    putdown(a[r].ch0);
    merge_up(r);
}
void changertt(int l,int r)
{
    Splay(search(root,l-1),N);
    Splay(r=search(root,r+1),root);
    a[a[r].ch0].rtt=1;
    putdown(a[r].ch0),merge_up(r);
}
int findsum(int l,int r)
{
    Splay(search(root,l-1),N);
    Splay(r=search(root,r+1),root);
    return a[a[r].ch0].sum;
}
int main()
{
    int q,w,e;
    read(n),read(m);
    a[N-3].ch0=a[N-3].ch1=N;
    a[0].ch0=a[0].fa=N;a[N].ch0=a[N].ch1=N;a[0].v=a[N-1].v=-INF;
    fo(i,1,n)read(a[i].v),a[a[i].fa=i-1].ch1=i,a[i].ch0=N;
    a[N-1].ch0=a[N-1].ch1=N,a[a[n].ch1=N-1].fa=n;a[N-1].si=1;
    a0=n;fod(i,n,0)merge(i);
    fo(i,1,m)
    {
        char ch=getchar(),cha1;
        while(ch<'A'||ch>'Z')ch=getchar();
        cha1=getchar();cha1=getchar();
        if(ch=='M'&&cha1=='X')
        {
            fo(j,1,5)ch=getchar();
            printf("%d\n",a[root].zc);
            continue;
        }
        q=read(q)+1,read(w);
        if(ch=='I')Insrt(q,w);
        if(ch=='D')DLT(q,q+w-1);
        if(ch=='M'&&cha1=='K')q=w+1,read(w),read(e),changev(q,q+w-1,e);
        if(ch=='R')changertt(q,q+w-1);
        if(ch=='G')q=w+1,read(w),printf("%d\n",findsum(q,q+w-1));
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值