【51NOD 1594】Gcd and Phi

Description

F(n)=i=1nj=1nφ(φ(i),φ(j))

其中 φ 表示欧拉函数。欧拉函数ϕn 是不超过n的数中与n互质的数的数目。
φ(φ(i),φ(j)) 表示i,j欧拉函数值的最大公约数的欧拉函数值.

给出n,求 F(n) 的值。
n<=2106,T<=5 ,时间限制:2S

Solution

直接上反演,
fi 表示i为 gcd(φ(i),φ(j)) 的倍数的i,j的对数,
这个可以在 O(nlog(n)) 的时间内求出来,
gi 表示i为 gcd(φ(i),φ(j)) 的i,j的对数,
则:

fd=i=1ndgid

反演:
则:
gd=i=1ndfidμ(i)

Ans=i=1nφ(gi)

同样是 O(nlog(n)) 的,
看到时间限制是2S,
所以我们要有梦想!
总复杂度为 O(T(2nlog(n)+n))
95分,有一个点TLE,

优化:
我们可以统计每个 fi 计入ans时的系数,
发现只要离线处理,就可以优化一个log,
总复杂度: O(nlog(n)+n+Tnlog(n))

Code

顺便放上一个自己下载的数据(好贵啊QAQ)
INPUT

5
653761
1226891
1169953
117661
1078862

OUTPUT

51735328704525
236122453157773
210595224735581
820906732323
173203129936831

#include <iostream>
#include <cstdio>
#include <cstdlib>
#define fo(i,a,b) for(int i=a;i<=b;i++)
#define sqr(x) ((x)*(x))
using namespace std;
typedef long long LL;
const int N=2*1e6+10;
int a[10],nn[10];
LL ans[10];
bool prz[N];
int pr[N/2],mu[N];
LL f[N],phi[N],F[N];
int g[N];
int main()
{
    mu[1]=1;phi[1]=1;
    fo(i,2,N-1)
    {
        if(!prz[i])pr[++pr[0]]=i,mu[i]=-1,phi[i]=i-1;
        fo(j,1,pr[0])
        {
            LL t=pr[j]*i;
            if(t>=N)break;
            prz[t]=1;
            phi[t]=phi[i]*pr[j];
            if(!(i%pr[j]))break;
            mu[t]=-mu[i];
            phi[t]=phi[i]*(pr[j]-1);
        }
    }
    int __;
    scanf("%d",&__);
    fo(i,1,__)scanf("%d",&a[i]),nn[i]=i;
    fo(i,1,__)fo(j,i+1,__)if(a[i]>a[j])swap(a[i],a[j]),swap(nn[i],nn[j]);
    LL q;int n,w=0;
    fo(_,1,__)
    {
        n=a[_];
        f[1]=(LL)n;
        fo(i,1,n)g[i]=0;
        fo(i,max(3,w+1),n)g[phi[i]]++;
        ans[nn[_]]=0;
        fo(i,1,n)
        {
            fo(j,w/i+1,n/i)F[i*j]+=mu[j]*phi[i];
        }
        ans[nn[_]]=f[1]*f[1]*F[1];
        fo(i,2,n) 
        {
            fo(j,1,n/i)f[i]+=g[i*j];
            ans[nn[_]]+=f[i]*f[i]*F[i];
        }
        w=n;
    }
    fo(i,1,__)printf("%lld\n", ans[i]);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值