Description
F(n)=∑i=1n∑j=1nφ(φ(i),φ(j))
其中 φ 表示欧拉函数。欧拉函数ϕn 是不超过n的数中与n互质的数的数目。
φ(φ(i),φ(j)) 表示i,j欧拉函数值的最大公约数的欧拉函数值.
给出n,求
F(n)
的值。
n<=2∗106,T<=5
,时间限制:2S
Solution
直接上反演,
设
fi
表示i为
gcd(φ(i),φ(j))
的倍数的i,j的对数,
这个可以在
O(nlog(n))
的时间内求出来,
设
gi
表示i为
gcd(φ(i),φ(j))
的i,j的对数,
则:
fd=∑i=1⌊nd⌋gid
反演:
则:
gd=∑i=1⌊nd⌋fid∗μ(i)
Ans=∑i=1nφ(gi)
同样是 O(nlog(n)) 的,
看到时间限制是2S,
所以我们要有梦想!
总复杂度为 O(T∗(2∗nlog(n)+n)) ,
95分,有一个点TLE,
优化:
我们可以统计每个
fi
计入ans时的系数,
发现只要离线处理,就可以优化一个log,
总复杂度:
O(nlog(n)+n+T∗nlog(n))
Code
顺便放上一个自己下载的数据(好贵啊QAQ)
INPUT
5
653761
1226891
1169953
117661
1078862
OUTPUT
51735328704525
236122453157773
210595224735581
820906732323
173203129936831
#include <iostream>
#include <cstdio>
#include <cstdlib>
#define fo(i,a,b) for(int i=a;i<=b;i++)
#define sqr(x) ((x)*(x))
using namespace std;
typedef long long LL;
const int N=2*1e6+10;
int a[10],nn[10];
LL ans[10];
bool prz[N];
int pr[N/2],mu[N];
LL f[N],phi[N],F[N];
int g[N];
int main()
{
mu[1]=1;phi[1]=1;
fo(i,2,N-1)
{
if(!prz[i])pr[++pr[0]]=i,mu[i]=-1,phi[i]=i-1;
fo(j,1,pr[0])
{
LL t=pr[j]*i;
if(t>=N)break;
prz[t]=1;
phi[t]=phi[i]*pr[j];
if(!(i%pr[j]))break;
mu[t]=-mu[i];
phi[t]=phi[i]*(pr[j]-1);
}
}
int __;
scanf("%d",&__);
fo(i,1,__)scanf("%d",&a[i]),nn[i]=i;
fo(i,1,__)fo(j,i+1,__)if(a[i]>a[j])swap(a[i],a[j]),swap(nn[i],nn[j]);
LL q;int n,w=0;
fo(_,1,__)
{
n=a[_];
f[1]=(LL)n;
fo(i,1,n)g[i]=0;
fo(i,max(3,w+1),n)g[phi[i]]++;
ans[nn[_]]=0;
fo(i,1,n)
{
fo(j,w/i+1,n/i)F[i*j]+=mu[j]*phi[i];
}
ans[nn[_]]=f[1]*f[1]*F[1];
fo(i,2,n)
{
fo(j,1,n/i)f[i]+=g[i*j];
ans[nn[_]]+=f[i]*f[i]*F[i];
}
w=n;
}
fo(i,1,__)printf("%lld\n", ans[i]);
return 0;
}