Description
Solution
这题的树套树模型显然,
其实可以用整体二分(CDQ分治)来做,
一个矩形可以在坐标系中拆成4个点,
二分一个x轴的位置,把左边的点压到二分的直线上,用树状数组记录一下前缀和,查询是直接在树状数组中查,
就这样不同的分治下去,记得好要处理一下那些点在左,那些点在右,
复杂度: O(nlog(n)2)
Code
#include <iostream>
#include <cstdio>
#include <cstdlib>
#define fo(i,a,b) for(int i=a;i<=b;i++)
#define NX(x) ((x)&(-(x)))
using namespace std;
const int N=200500,M=2e5+1;
int read(int &n)
{
char ch=' ';int q=0,w=1;
for(;(ch!='-')&&((ch<'0')||(ch>'9'));ch=getchar());
if(ch=='-')w=-1,ch=getchar();
for(;ch>='0' && ch<='9';ch=getchar())q=q*10+ch-48;n=q*w;return n;
}
int n,m;
int f[N+1],SUM;
int ans[N];
int a[30][N][7],an[30];
void add(int q,int l2)
{
SUM+=l2;
for(;q<=M;q+=NX(q))f[q]+=l2;
}
int search(int q)
{
int ans=0;
for(;q;q-=NX(q))ans+=f[q];
return ans;
}
void divide(int l,int r,int c)
{
if(r<l||!an[c])return;
int t=(l+r)>>1;
fo(i,1,an[c])if(!a[c][i][0])
{
a[c][i][6]=0;
if(a[c][i][1]<=t&&a[c][i][1]>=l)
{
add(a[c][i][2],1);
add(a[c][i][4]+1,-1);
a[c][i][6]++;
}
if(a[c][i][3]+1<=t&&a[c][i][3]+1>=l)
{
add(a[c][i][2],-1);
add(a[c][i][4]+1,1);
a[c][i][6]++;
}
}else if(a[c][i][1]>=t&&a[c][i][1]<=r)
{
ans[a[c][i][5]]+=search(a[c][i][2]),a[c][i][6]=0;
}
else a[c][i][6]=2;
an[c+1]=0;
fo(i,1,an[c])
{
if(a[c][i][6])
{
an[c+1]++;
fo(j,0,5)a[c+1][an[c+1]][j]=a[c][i][j];
}
if(!a[c][i][0])
{
a[c][i][6]=0;
if(a[c][i][1]<=t&&a[c][i][1]>=l)
{
add(a[c][i][2],-1);
add(a[c][i][4]+1,1);
}
if(a[c][i][3]+1<=t&&a[c][i][3]+1>=l)
{
add(a[c][i][2],1);
add(a[c][i][4]+1,-1);
}
}
}
if(l!=r)
{
divide(l,t-1,c+1);
an[c+1]=0;
fo(i,1,an[c])if(a[c][i][6]<2)
{
an[c+1]++;
fo(j,0,5)a[c+1][an[c+1]][j]=a[c][i][j];
}
divide(t+1,r,c+1);
}
}
int main()
{
int q,w,e,q1,w1;
read(n);
fo(i,1,n)
{
a[0][i][5]=i;
read(a[0][i][0]);
fo(j,1,2+2*(a[0][i][0]==0))a[0][i][j]=1+read(a[0][i][j]);
}
an[0]=n;
divide(1,M,0);
fo(i,1,n)if(a[0][i][0])printf("%d\n",ans[i]);
return 0;
}