【JZOJ 3893】画矩形

Description

这里写图片描述

Solution

这题的树套树模型显然,
其实可以用整体二分(CDQ分治)来做,
一个矩形可以在坐标系中拆成4个点,
二分一个x轴的位置,把左边的点压到二分的直线上,用树状数组记录一下前缀和,查询是直接在树状数组中查,
就这样不同的分治下去,记得好要处理一下那些点在左,那些点在右,

复杂度: O(nlog(n)2)

Code

#include <iostream>
#include <cstdio>
#include <cstdlib>
#define fo(i,a,b) for(int i=a;i<=b;i++)
#define NX(x) ((x)&(-(x)))
using namespace std;
const int N=200500,M=2e5+1;
int read(int &n)
{
    char ch=' ';int q=0,w=1;
    for(;(ch!='-')&&((ch<'0')||(ch>'9'));ch=getchar());
    if(ch=='-')w=-1,ch=getchar();
    for(;ch>='0' && ch<='9';ch=getchar())q=q*10+ch-48;n=q*w;return n;
}
int n,m;
int f[N+1],SUM;
int ans[N];
int a[30][N][7],an[30];
void add(int q,int l2)
{
    SUM+=l2;
    for(;q<=M;q+=NX(q))f[q]+=l2;
}
int search(int q)
{
    int ans=0;
    for(;q;q-=NX(q))ans+=f[q];
    return ans;
}
void divide(int l,int r,int c)
{
    if(r<l||!an[c])return;
    int t=(l+r)>>1;
    fo(i,1,an[c])if(!a[c][i][0])
    {
        a[c][i][6]=0;
        if(a[c][i][1]<=t&&a[c][i][1]>=l)
        {
            add(a[c][i][2],1);
            add(a[c][i][4]+1,-1);
            a[c][i][6]++;
        }
        if(a[c][i][3]+1<=t&&a[c][i][3]+1>=l)
        {
            add(a[c][i][2],-1);
            add(a[c][i][4]+1,1);
            a[c][i][6]++;
        }
    }else if(a[c][i][1]>=t&&a[c][i][1]<=r)
    {
        ans[a[c][i][5]]+=search(a[c][i][2]),a[c][i][6]=0;
    }
        else a[c][i][6]=2;
    an[c+1]=0;
    fo(i,1,an[c])
    {
        if(a[c][i][6])
        {
            an[c+1]++;
            fo(j,0,5)a[c+1][an[c+1]][j]=a[c][i][j];
        }
        if(!a[c][i][0])
        {
            a[c][i][6]=0;
            if(a[c][i][1]<=t&&a[c][i][1]>=l)
            {
                add(a[c][i][2],-1);
                add(a[c][i][4]+1,1);
            }
            if(a[c][i][3]+1<=t&&a[c][i][3]+1>=l)
            {
                add(a[c][i][2],1);
                add(a[c][i][4]+1,-1);
            }
        }
    }
    if(l!=r)
    {
        divide(l,t-1,c+1);
        an[c+1]=0;
        fo(i,1,an[c])if(a[c][i][6]<2)
        {
            an[c+1]++;
            fo(j,0,5)a[c+1][an[c+1]][j]=a[c][i][j];
        }
        divide(t+1,r,c+1);
    }
}
int main()
{
    int q,w,e,q1,w1;
    read(n);
    fo(i,1,n)
    {
        a[0][i][5]=i;
        read(a[0][i][0]);
        fo(j,1,2+2*(a[0][i][0]==0))a[0][i][j]=1+read(a[0][i][j]);
    }
    an[0]=n;
    divide(1,M,0);
    fo(i,1,n)if(a[0][i][0])printf("%d\n",ans[i]);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值