Description
市场中有n个集合在卖。我们想买到满足以下要求的一些集合,所买到集合的个数要等于所有买到的集合合并后的元素的个数。
每个集合有相应的价格,要使买到的集合花费最小。
这里我们的集合有一个特点:对于任意整数k(k>0),k个集合的并集中,元素的个数不会小于k个。
现在让你去市场里买一些满足以上条件集合,可以一个都不买。
Solution
题目奇怪的条件就是保证了,对于每个集合,有一个它的代表元素,
因为我们最后做选出的要保证集合个数和元素个数相同,也就是每个集合的代表元素于每个元素一一对应了,
做出了代表元素,即可算出,如果选一个集合,一定还要选哪些集合,
于是这题用匈牙利+最大权闭合子图即可,
复杂度: O(n3)
Code
#include <cstdio>
#include <algorithm>
#define fo(i,a,b) for(int i=a;i<=b;i++)
#define fod(i,a,b) for(int i=a;i>=b;i--)
#define efo(i,q) for(int i=A[q];i;i=B[i][0])
#define min(q,w) ((q)>(w)?(w):(q))
#define max(q,w) ((q)<(w)?(w):(q))
using namespace std;
const int N=1005,INF=2e9;
int read(int &n)
{
char ch=' ';int q=0,w=1;
for(;(ch!='-')&&((ch<'0')||(ch>'9'));ch=getchar());
if(ch=='-')w=-1,ch=getchar();
for(;ch>='0' && ch<='9';ch=getchar())q=q*10+ch-48;n=q*w;return n;
}
int m,n,ans,Ans,S,T;
int a[N],c[N];
int z[N],TI;
int d[N];
int B[N*N][3],A[N],B0=1;
int H[N],Hv[N];
void link(int q,int w,int e)
{
B[++B0][0]=A[q];A[q]=B0,B[B0][1]=w,B[B0][2]=e;
B[++B0][0]=A[w];A[w]=B0,B[B0][1]=q,B[B0][2]=0;
}
bool OK(int q)
{
z[q]=TI;
efo(i,q)if(!c[B[i][1]]||(z[c[B[i][1]]]<TI&&OK(c[B[i][1]])))
{c[q]=B[i][1],c[B[i][1]]=q;return 1;}
return 0;
}
int aug(int q,int e)
{
if(q==T||!e)return e;
int mi=T;
efo(i,q)if(B[i][2])
{
if(H[q]==1+H[B[i][1]])
{
int t=aug(B[i][1],min(e,B[i][2]));
if(H[S]>n+3)return 0;
if(t)
{
B[i][2]-=t;
B[i^1][2]+=t;
return t;
}
}
mi=min(mi,H[B[i][1]]);
}
if(!(--Hv[H[q]]))H[S]=1e9;
else Hv[H[q]=mi+1]++;
return 0;
}
int main()
{
int q,w;
read(n);
fo(i,1,n)
{
read(q);
fo(j,1,q)read(w),link(i,w+n,0);
}
fo(i,1,n)read(a[i]);
fo(i,1,n)TI++,OK(i);
Ans=0;
fo(i,1,n)if(a[i]<0)Ans+=-a[i];
S=0,T=3*n+1;
fo(I,1,n)
{
if(a[I]<0)link(S,I+2*n,-a[I]);
else link(I+2*n,T,a[I]);
d[1]=I;z[I]=++TI;
int s=1,t=1;
for(;s<=t;s++)
{
q=d[s];if(I!=q)link(I+2*n,q+2*n,INF);
efo(i,q)if(TI>z[c[B[i][1]]])
d[++t]=c[B[i][1]],z[c[B[i][1]]]=TI;
}
}
Hv[0]=n+2;
while(H[S]<=n+3)Ans-=aug(S,INF);
printf("%d\n",min(0,-Ans));
return 0;
}