【51NOD 1551】集合交易

32 篇文章 0 订阅
9 篇文章 0 订阅

Description

市场中有n个集合在卖。我们想买到满足以下要求的一些集合,所买到集合的个数要等于所有买到的集合合并后的元素的个数。
每个集合有相应的价格,要使买到的集合花费最小。
这里我们的集合有一个特点:对于任意整数k(k>0),k个集合的并集中,元素的个数不会小于k个。
现在让你去市场里买一些满足以上条件集合,可以一个都不买。

Solution

题目奇怪的条件就是保证了,对于每个集合,有一个它的代表元素,
因为我们最后做选出的要保证集合个数和元素个数相同,也就是每个集合的代表元素于每个元素一一对应了,

做出了代表元素,即可算出,如果选一个集合,一定还要选哪些集合,

于是这题用匈牙利+最大权闭合子图即可,

复杂度: O(n3)

Code

#include <cstdio>
#include <algorithm>
#define fo(i,a,b) for(int i=a;i<=b;i++)
#define fod(i,a,b) for(int i=a;i>=b;i--)
#define efo(i,q) for(int i=A[q];i;i=B[i][0])
#define min(q,w) ((q)>(w)?(w):(q))
#define max(q,w) ((q)<(w)?(w):(q))
using namespace std;
const int N=1005,INF=2e9;
int read(int &n)
{
    char ch=' ';int q=0,w=1;
    for(;(ch!='-')&&((ch<'0')||(ch>'9'));ch=getchar());
    if(ch=='-')w=-1,ch=getchar();
    for(;ch>='0' && ch<='9';ch=getchar())q=q*10+ch-48;n=q*w;return n;
}
int m,n,ans,Ans,S,T;
int a[N],c[N];
int z[N],TI;
int d[N];
int B[N*N][3],A[N],B0=1;
int H[N],Hv[N];
void link(int q,int w,int e)
{
    B[++B0][0]=A[q];A[q]=B0,B[B0][1]=w,B[B0][2]=e;
    B[++B0][0]=A[w];A[w]=B0,B[B0][1]=q,B[B0][2]=0;
}
bool OK(int q)
{
    z[q]=TI;
    efo(i,q)if(!c[B[i][1]]||(z[c[B[i][1]]]<TI&&OK(c[B[i][1]])))
    {c[q]=B[i][1],c[B[i][1]]=q;return 1;}
    return 0;
}
int aug(int q,int e)
{
    if(q==T||!e)return e;
    int mi=T;
    efo(i,q)if(B[i][2])
    {
        if(H[q]==1+H[B[i][1]])
        {
            int t=aug(B[i][1],min(e,B[i][2]));
            if(H[S]>n+3)return 0;
            if(t)
            {
                B[i][2]-=t;
                B[i^1][2]+=t;
                return t;
            }
        }
        mi=min(mi,H[B[i][1]]);
    }
    if(!(--Hv[H[q]]))H[S]=1e9;
    else Hv[H[q]=mi+1]++;
    return 0;
}
int main()
{
    int q,w;
    read(n);
    fo(i,1,n)
    {
        read(q);
        fo(j,1,q)read(w),link(i,w+n,0);
    }
    fo(i,1,n)read(a[i]);
    fo(i,1,n)TI++,OK(i);
    Ans=0;
    fo(i,1,n)if(a[i]<0)Ans+=-a[i];
    S=0,T=3*n+1;
    fo(I,1,n)
    {
        if(a[I]<0)link(S,I+2*n,-a[I]);
        else link(I+2*n,T,a[I]);
        d[1]=I;z[I]=++TI;
        int s=1,t=1;
        for(;s<=t;s++)
        { 
            q=d[s];if(I!=q)link(I+2*n,q+2*n,INF);
            efo(i,q)if(TI>z[c[B[i][1]]])
            d[++t]=c[B[i][1]],z[c[B[i][1]]]=TI;
        }
    }
    Hv[0]=n+2;
    while(H[S]<=n+3)Ans-=aug(S,INF);
    printf("%d\n",min(0,-Ans));
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值