给出n*n的矩阵a,设
其中, b b 为n的排列,
求对于所有b,ans的和
这题是一道提答题
Solution
这里给出的解法(主要是空间小)
最终的答案为:
Sn S n 为1~n的集合
最后一个 ∑ ∑ 可以预处理一半,再 O(2) O ( 2 ) 出解,
总复杂度为 O(2nn) O ( 2 n n )
证明
后面的式子可以看成是不同的选取方案的和,
合法的方案一定在容斥系数为1的时候出现且只出现一次(全集),
剩下不合法的,一定会被
2n−|x|
2
n
−
|
x
|
个S包含,也就是出现的次数一定是
2n−|S|
2
n
−
|
S
|
次,且容斥系数一半为1,一半为-1,
所有,式子最后的值就只有合法的方案的贡献,