- 博客(16)
- 收藏
- 关注
原创 **卷积神经网络典型CNN**
SeNet(Squeeze-and-Excitation Networks)是ImageNet 2017年分类任务冠军,核心思想是:Squeeze(挤压、压缩)和Excitation(激励)两个操作,其主要目的是通过显示的构建特征通道之间的相互依赖关系,采用特征重定向的策略,通过学习的方式自动的获取每个特征通道的重要程度,然后依据***这个重要程度去提升有用的特征,并抑制对于当前任务用处不大的特征。Squeeze特征压缩操作,将每个feature map的特征数据使用全局平均池化操作转换为一个数值(实数),
2024-07-23 17:29:00
1753
3
原创 **卷积神经网络典型CNN**
LeNet:最早用于数字识别的CNNAlexNet:2012年ILSVRC比赛冠军,远超第二名的CNN,比LeNet更深,用多层小卷积叠加来替换单个的大卷积ZF Net:2013ILSVRC冠军GoogleNet:2014ILSVRC冠军VGGNet:2014ILSVRC比赛中算法模型,效果率低于GoogleNetResNet:2015ILSVRC冠军,结构修正以适应更深层次的CNN训练DenseNet:CVPR 2017最佳论文LeNet-5C1层是一个卷积层。
2024-07-23 17:15:52
445
1
原创 CV深度学习基础
卷积神经网络(Convolutional Neural Networks,CNN),CNN可以有效的降低(传统神经网络/全连接神经网络)的复杂性,常见的CNN结构有LeNet-5、AlexNet、ZFNet、等等;从这些结构来讲CNN发展的一个重要方向就是层次的增加,通过这种方式可以利用增加的非线性神经元得出目标函数的近似结构,同时得出更好的特征表达,但是这种方式导致了网络整体复杂性的增加,使网络更加难以优化,很容易的情况。CNN的应用主要是在等应用场景应用比较多。CNN的应用主要是在。
2024-07-01 16:00:45
985
原创 聚类算法K-means
并且,当k小于真实聚类数时,由于k的增大会大幅增加每个簇的聚合程度,故SSE的下降幅度会很大,而当k到达真实聚类数时,再增加k所得到的聚合程度回报会迅速变小,所以SSE的下降幅度会骤减,然后随着k值的继续增大而趋于平缓,也就是说SSE和k的关系图是一个手肘的形状,而这个肘部对应的k值就是数据的真实聚类数。所有样本的si的均值被称为聚类结果的轮廓系数。• 其中,Ci是第i个簇,x是Ci中的样本点,μi是Ci的质心(Ci中所有样本的均值),SSE是所有样本的聚类误差,代表了聚类效果的好坏。
2024-06-04 19:29:50
992
原创 朴素贝叶斯(Naive Bayes)
参赛者会看见三扇关闭了的门,其中一扇的后面有一辆汽车, 选中后面有车的那扇门可赢得该汽车,另外两扇门后面则各 藏有一只山羊。当参赛者选定了一扇门,但未去开启它的时 候,节目主持人开启剩下两扇门的其中一扇,露出其中一只 山羊。主持人其后会问参赛者要不要换另一扇仍然关上的门。问题是:换另一扇门会否增加参赛者赢得汽车的机率?
2024-05-27 21:54:16
1101
原创 支持向量机(SVM)
• 拉格朗日乘子法就是当我们的优化函数存在等值约束的情况下的一种最优化求解方式;其中参 数α被称为拉格朗日乘子,要求α不等于0mixXf(X)s.t:hi(x)=0,i=1,2,...,pminxf(x)+∑i=1pαihi(x);αi≠0mix_X f(X) \\s.t:h_i(x)=0, \quad i=1,2,...,p\\min_xf(x)+\sum_{i=1}^p\alpha_ih_i(x);\alpha_i \neq0mixXf(X)s.t:hi(x)=0,i=1,2,...,pm
2024-05-26 19:42:30
952
原创 集成学习:随机森林、GBDT
• 集成学习的思想是将若干个学习器(分类器&回归器)组合之后产生一个新学习器。弱分类器(weak learner)指那些分类准确率只稍微好于随机猜测的分类器(error rate < 0.5)• 集成算法的成功在于保证弱分类器的多样性(Diversity)。而且集成不稳定的算法也能够得到一个比较明显的性能提升。• 常见的集成学习思想有:• Bagging• Boosting• Stacking• 1. 弱分类器间存在一定的差异性,这会导致分类的边界不同,也就是说可能存在错误。那么将多个弱分类器合并后,就可以
2024-05-23 16:32:21
1124
1
原创 机器学习—决策树
• 对于整体的数据集而言,按照所有的特征属性进行划分操作,对所有划分操作的结果集的“纯度”进行比较,选择“纯度”越高的特征属性作为当前需要分割的数据集进行分割操作,持续迭代,直到得到最终结果。当构建好一个判断模型后,新来一个用户后,可以根据构建好的模型直接进行判断,当构建好一个判断模型后,新来一个用户后,可以根据构建好的模型直接进行判断,当构建好一个判断模型后,新来一个用户后,可以根据构建好的模型直接进行判断.• 在回归树中,叶子节点的预测值一般为叶子节点中所有值的均值来作为当前叶子节点的预测值。
2024-05-18 15:52:27
539
原创 数据清洗和特征工程
• 特征工程是使用专业背景知识和技巧处理数据,使得特征能在机器学习算法上发挥更好的作用的过程。• 意义:会直接影响机器学习的效果特征预处理数据清洗• 数据清洗(data cleaning)是在机器学习过程中一个不可缺少的环节,其数据的清洗结果直接关系到模型效果以及最终的结论。在实际的工作中,数据清洗通常占开发过程的30%-50%左右的时间。数据清洗–预处理• 在数据预处理过程主要考虑两个方面,如下:• 选择数据处理工具:关系型数据库或者Python。
2024-05-05 18:08:36
1022
2
原创 数据清洗和特征工程
• 特征工程是使用专业背景知识和技巧处理数据,使得特征能在机器学习算法上发挥更好的作用的过程。• 意义:会直接影响机器学习的效果特征预处理数据清洗• 数据清洗(data cleaning)是在机器学习过程中一个不可缺少的环节,其数据的清洗结果直接关系到模型效果以及最终的结论。在实际的工作中,数据清洗通常占开发过程的30%-50%左右的时间。数据清洗–预处理• 在数据预处理过程主要考虑两个方面,如下:• 选择数据处理工具:关系型数据库或者Python。
2024-05-05 18:06:41
1426
2
原创 Logistic-Softmax
• softmax回归是logistic回归的一般化,适用于K分类的问题,针对于每个类别都有一个参数向量θ,第k类的参数为向量θk,组成的二维矩阵为θk*n;由于在极大似然估计中,当似然函数最大的时候模型最优;而在机器学习领域中,目标函数最小的时候,模型最优;故可以使用似然函数乘以-1的结果作为目标函数。• softmax函数的本质就是将一个K维的任意实数向量压缩(映射)成另一个K维的实数向量,其中向量中的每个元素取值都介于(0,1)之间。Logistic/sigmoid函数。
2024-04-20 10:25:16
791
1
原创 机器学习-梯度下降
● SGD算法中对于每个样本都需要更新参数值,当样本值不太正常的时候,就有可能会导致本次的参数更新会产生相反的影响,也就是说SGD算法的结果并不是完全收敛的,而是在收敛结果处波动的;● 当样本量为m的时候,每次迭代BGD算法中对于参数值更新一次,SGD算法中对于参数值更新m次,MBGD算法中对于参数值更新m/n次,相对来讲SGD算法的更新速度最快;:初始值不同,最终获得的最小值也有可能不同,因为梯度下降法求解的是局部最优解,所以一般况下,选择多次不同初始值运行算法,并最终返回损失函数最小情况下的结果值;
2024-04-17 21:53:14
687
原创 机器学习-回归算法
• 算法模型:线性回归(Linear)、岭回归(Ridge)、LASSO回归、Elastic Net• 正则化:L1-norm、L2-normJθ∑i1mhθxi−yi2−minθJθJθi1∑mhθxi−yi2−minθJθ• θ求解方式:最小二乘法(直接计算,目标函数是平方和损失函数)、梯度下降 (BGD\SGD\MBGD)# 加载数据# 数据预处理# 获取特征属性X和目标属性Y
2024-04-12 21:09:56
863
1
原创 K近邻算法(KNN)
• K近邻(K-nearst neighbors, KNN)是一种基本的机器学习算法,所谓k近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它最接近的k个邻居来代表。比如:判断一个人的人品,只需要观察与他来往最密切的几个人的人品好坏就可以得出,即“近朱者赤,近墨者黑”;KNN算法既可以应用于分类应用中,也可以应用在回归应用中。 • KNN在做回归和分类的主要区别在于最后做预测的时候的决策方式不同。KNN在分类预测时,一般采用;而在做回归预测时,一般采用。
2024-04-08 13:14:48
1027
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅