poj 3090 欧拉函数

Euler函数表达通式:euler(x)=x(1-1/p1)(1-1/p2)(1-1/p3)(1-1/p4)…(1-1/pn),其中p1,p2……pn为x的所有素因数,x是不为0的整数。euler(1)=1(唯一和1互质的数就是1本身)。

欧拉公式的延伸:一个数的所有质因子之和是euler(n)*n/2。


参考http://blog.csdn.net/once_hnu/article/details/6302868


#include <iostream>
#include <cstring>
#include <string>
#include <cstdio>
#include <algorithm>
#include <vector>
#include <set>
#include <map>
#include <stack>
#include <queue>
using namespace std;
#define maxn 1001
#define inf 0x3f3f3f3f
int el[maxn];

int main()
{
    for(int i=1; i< maxn; i++) el[i]=i;
    for(int i=2; i< maxn; i++)
        if(el[i]==i)
        for(int j=i; j<maxn; j+=i)
            el[j]=el[j]/i*(i-1);

    int n;
    int t;
    int cas=1;
    cin>>t;
    while(t--){
        cin>>n;
        int ans=0;
        for(int i=1; i<=n; i++)
            ans+=2*el[i];
        ans++;
        cout<<cas++<<" "<<n<<" "<<ans<<endl;
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值