poj 2446 二分图最大匹配 匈牙利算法

Chessboard
Time Limit: 2000MS Memory Limit: 65536K
Total Submissions: 14525 Accepted: 4513

Description

Alice and Bob often play games on chessboard. One day, Alice draws a board with size M * N. She wants Bob to use a lot of cards with size 1 * 2 to cover the board. However, she thinks it too easy to bob, so she makes some holes on the board (as shown in the figure below).

We call a grid, which doesn’t contain a hole, a normal grid. Bob has to follow the rules below:
1. Any normal grid should be covered with exactly one card.
2. One card should cover exactly 2 normal adjacent grids.

Some examples are given in the figures below:

A VALID solution.


An invalid solution, because the hole of red color is covered with a card.


An invalid solution, because there exists a grid, which is not covered.

Your task is to help Bob to decide whether or not the chessboard can be covered according to the rules above.

Input

There are 3 integers in the first line: m, n, k (0 < m, n <= 32, 0 <= K < m * n), the number of rows, column and holes. In the next k lines, there is a pair of integers (x, y) in each line, which represents a hole in the y-th row, the x-th column.

Output

If the board can be covered, output "YES". Otherwise, output "NO".

Sample Input

4 3 2
2 1
3 3

Sample Output

YES

Hint


A possible solution for the sample input.



像这种n×m的棋盘图是经典的二分图,将(i+j)%2==0的点定为偶点,(i+j)%2==1的点定为奇点。一个覆盖就是一个偶点和奇点匹配。

将每个偶点与相邻的奇点连接一条边,求出二分图最大匹配数×2==n*m-k,检查是否所有的点都被匹配了。

#include <iostream>
#include <cstring>
#include <string>
#include <cstdio>
#include <algorithm>
#include <vector>
#include <set>
#include <map>
#include <stack>
#include <queue>
using namespace std;
#define maxn 1024
int dx[4]={-1,0,1,0}, dy[4]={0,1,0,-1};
vector<int> g[maxn];

void add(int u, int v)
{
    g[u].push_back(v);
}
int mp[32][32];
int n,m,k;
int match[maxn];
int vis[maxn];
int dfs(int u)
{
    vis[u]=1;
    for(int i=0; i<g[u].size(); i++){
        int v=g[u][i], m=match[v];
        if(m==-1 || !vis[m]&&dfs(m)){
            match[v]=u;
            match[u]=v;
            return 1;
        }
    }
    return 0;
}

int hungry()
{
    int res=0;
    memset(match, -1, sizeof(match));
    int odd=(n*m)/2;
    for(int i=0; i<odd; i++){
        if(match[i]<0){
            memset(vis, 0, sizeof(vis));
            res+=dfs(i);
        }
    }

    return res;
}

int main()
{
    while(scanf("%d%d%d", &n, &m, &k)==3){
        for(int i=0; i<n*m/2; i++) g[i].clear();
        int u,v;
        memset(mp, 0, sizeof(mp));
        for(int i=0; i<k; i++){
            scanf("%d%d", &u, &v);
            swap(u,v);
            u--; v--;
            mp[u][v]=1;
        }

        int odd=(n*m)/2;
        for(int i=0; i<n; i++){
            for(int j=0; j<m; j++)
            if((i+j)%2==0 && !mp[i][j]){
                u=(i*m+j)/2;
                for(int d=0; d<4; d++){
                    int ni=i+dx[d], nj=j+dy[d];
                    if(mp[ni][nj]||ni<0 || nj <0 || ni>= n || nj>=m) continue;
                    v=odd+(ni*m+nj)/2;
                    add(u,v);
                }
            }
        }

        int res=hungry()*2;
        if(res==n*m-k)
            puts("YES");
        else puts("NO");

    }
    return 0;
}






评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值