poj 1325 最小顶点覆盖

Machine Schedule
Time Limit: 1000MS Memory Limit: 10000K
Total Submissions: 12559 Accepted: 5368

Description

As we all know, machine scheduling is a very classical problem in computer science and has been studied for a very long history. Scheduling problems differ widely in the nature of the constraints that must be satisfied and the type of schedule desired. Here we consider a 2-machine scheduling problem.

There are two machines A and B. Machine A has n kinds of working modes, which is called mode_0, mode_1, ..., mode_n-1, likewise machine B has m kinds of working modes, mode_0, mode_1, ... , mode_m-1. At the beginning they are both work at mode_0.

For k jobs given, each of them can be processed in either one of the two machines in particular mode. For example, job 0 can either be processed in machine A at mode_3 or in machine B at mode_4, job 1 can either be processed in machine A at mode_2 or in machine B at mode_4, and so on. Thus, for job i, the constraint can be represent as a triple (i, x, y), which means it can be processed either in machine A at mode_x, or in machine B at mode_y.

Obviously, to accomplish all the jobs, we need to change the machine's working mode from time to time, but unfortunately, the machine's working mode can only be changed by restarting it manually. By changing the sequence of the jobs and assigning each job to a suitable machine, please write a program to minimize the times of restarting machines.

Input

The input file for this program consists of several configurations. The first line of one configuration contains three positive integers: n, m (n, m < 100) and k (k < 1000). The following k lines give the constrains of the k jobs, each line is a triple: i, x, y.

The input will be terminated by a line containing a single zero.

Output

The output should be one integer per line, which means the minimal times of restarting machine.

Sample Input

5 5 10
0 1 1
1 1 2
2 1 3
3 1 4
4 2 1
5 2 2
6 2 3
7 2 4
8 3 3
9 4 3
0

Sample Output

3

Source

每个任务存在一个(xi,yi)的关系,要么被机器A的xi模式完成,要么被机器B的yi模式完成。将两个机器的n、m个模式作为图中点,对于每个任务从点xi到yi连接一条边。

即任务作为边,并且每个任务被边的两个端点其中一个覆盖即可,所以这题就转化为最小顶点覆盖模型。 |最小顶点覆盖|=|最大匹配|,这题的图是二分图,只需要用匈牙利求最大匹配就可以了。

#include <iostream>
#include <cstring>
#include <string>
#include <cstdio>
#include <algorithm>
#include <vector>
#include <set>
#include <map>
#include <stack>
#include <queue>
using namespace std;

vector<int> g[205];
int match[205];
int vis[205];
int n,m,k;
int dfs(int u)
{
    vis[u]=1;
    for(int i=0; i<g[u].size(); i++){
        int v=g[u][i], mt=match[v];
        if(mt==-1 || !vis[mt]&&dfs(mt)){
            match[v]=u;
            match[u]=v;
            return 1;
        }
    }
    return 0;
}

int hungry()
{
    memset(match, -1, sizeof(match));

    int res=0;
    for(int i=1; i<=n; i++)
        if(match[i]==-1){
            memset(vis, 0, sizeof(vis));
            res+=dfs(i);
        }
    return res;
}

int main()
{
    while(scanf("%d", &n)==1 && n){
        scanf("%d%d", &m, &k);
        for(int i=0; i<=n+m; i++)g[i].clear();

        int t, a,b;
        for(int i=1; i<=k; i++){
            scanf("%d%d%d", &t, &a, &b);
            if(a==0||b==0) continue;
            g[a].push_back(b+n);
            g[n+b].push_back(a);
        }

        cout<<hungry()<<endl;
    }
    return 0;
}





  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值