浅析 AVL 树,红黑树,B 树,B+ 树

本文详细介绍了AVL树、红黑树、B树和B+树的数据结构特点,包括它们的定义、特征、应用场景和优缺点。AVL树严格平衡,查询效率高但维护成本大;红黑树近似平衡,适用于频繁插入删除场景;B树降低树的高度以减少磁盘I/O,B+树则适合大规模数据存储,支持范围查询。四种数据结构在数据库索引和文件系统中有广泛应用。
摘要由CSDN通过智能技术生成

一. AVL 树

1.出现的原因
二叉搜索树虽可以缩短查找的效率,但如果数据有序或接近有序,二叉搜索树将有可能退化为单支树,此时查找元素相当于在顺序表中查找元素,效率低下,相当于O(n)。

例如:对于同一个关键码集合,如果各关键码插入的次序不同,可能得到不同结构的二叉搜索树:
在这里插入图片描述
最优情况下,二叉搜索树为完全二叉树。
最差情况下,二叉搜索树退化为单支树。


2.定义
AVL 树是一种二叉平衡搜索树,在 AVL 树中,任何节点的两个子树的高度之差的绝对值最大为1,因此也被称为二叉平衡搜索树。但是维护这种高度平衡所付出的代价也是很大的,故而实际应用并不多,因此更多的地方是用追求局部平衡而不是整体平衡的红黑树。(AVL 树的每个节点的左子树和右子树之差的绝对值不能超过1,如果插入或者删除一个节点使得高度之差的绝对值大于1,就要进行节点之间的旋转,将二叉树始终维持在一个平衡态。)


3.特征
● AVL 树它的任何一个节点的左右子树都是 AVL 树
●左右子树高度之差(简称平衡因子)的绝对值不超过1(只能为-1/0/1)
在这里插入图片描述
4.AVL 树的查找、插入和删除在平均和最坏情况下都是O(logn)。

5.在 AVL 树中进行插入或删除节点后,可能导致 AVL 树失衡。这种失去平衡的可以概括为4种姿态:LL(左左),LR(左右),RR(右右)和RL(右左)。

二.红黑树

1.特征

  • 每个结点不是红色的就是黑色的
  • 根节点是黑色的
  • 如果一个节点是红色的,则它的相邻结点必须是是黑色的
  • 对于每个结点,从该结点到其所有后代叶结点的简单路径上,均包含相同数目的黑色结点
  • 从根节点到叶子节点的每条路径中,必须包含相同数目的黑色节点
  • 红黑树也是一种二叉搜索树,但是他不是完全平衡的
  • 每个叶子结点都是黑色的
  • 其最长路径中节点个数不会超过最短路径中节点个数的两倍

如图:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值