一. AVL 树
1.出现的原因
二叉搜索树虽可以缩短查找的效率,但如果数据有序或接近有序,二叉搜索树将有可能退化为单支树,此时查找元素相当于在顺序表中查找元素,效率低下,相当于O(n)。
例如:对于同一个关键码集合,如果各关键码插入的次序不同,可能得到不同结构的二叉搜索树:
最优情况下,二叉搜索树为完全二叉树。
最差情况下,二叉搜索树退化为单支树。
2.定义
AVL 树是一种二叉平衡搜索树,在 AVL 树中,任何节点的两个子树的高度之差的绝对值最大为1,因此也被称为二叉平衡搜索树。但是维护这种高度平衡所付出的代价也是很大的,故而实际应用并不多,因此更多的地方是用追求局部平衡而不是整体平衡的红黑树。(AVL 树的每个节点的左子树和右子树之差的绝对值不能超过1,如果插入或者删除一个节点使得高度之差的绝对值大于1,就要进行节点之间的旋转,将二叉树始终维持在一个平衡态。)
3.特征
● AVL 树它的任何一个节点的左右子树都是 AVL 树
●左右子树高度之差(简称平衡因子)的绝对值不超过1(只能为-1/0/1)
4.AVL 树的查找、插入和删除在平均和最坏情况下都是O(logn)。
5.在 AVL 树中进行插入或删除节点后,可能导致 AVL 树失衡。这种失去平衡的可以概括为4种姿态:LL(左左),LR(左右),RR(右右)和RL(右左)。
二.红黑树
1.特征
- 每个结点不是红色的就是黑色的
- 根节点是黑色的
- 如果一个节点是红色的,则它的相邻结点必须是是黑色的
- 对于每个结点,从该结点到其所有后代叶结点的简单路径上,均包含相同数目的黑色结点
- 从根节点到叶子节点的每条路径中,必须包含相同数目的黑色节点
- 红黑树也是一种二叉搜索树,但是他不是完全平衡的
- 每个叶子结点都是黑色的
- 其最长路径中节点个数不会超过最短路径中节点个数的两倍
如图: