- 博客(1737)
- 收藏
- 关注
原创 一文带你了解RAG(检索增强生成) 概念理论介绍+代码,解决大模型幻觉与时效性问题
RAG(Retrieval Augmented Generation, 检索增强生成)是一种技术框架,其核心在于当 LLM 面对解答问题或创作文本任务时,首先会在大规模文档库中搜索并筛选出与任务紧密相关的素材,继而依据这些素材精准指导后续的回答生成或文本构造过程,旨在通过此种方式提升模型输出的准确性和可靠性。RAG 技术架构图介绍:富文本 主要存储于 txt 文件中,因为排版比较整洁,所以获取方式比较简单【版面分析——富文本txt读取】
2025-09-04 17:15:56
585
原创 RAG检索不准?数据前处理详解与大模型学习资源
让RAG真正发挥作用,关键不在炫技,而在前处理的扎实落地。选择合适的文件格式,做好清洗、切片、嵌入与索引,让每一段文字都带上可追溯的标签。面对复杂文件,借助解析和 OCR 工具,同样能生成高质量的文本切片。对于工程建设行业而言,高质量的知识库意味着工程规范、设计资料、合同文本、会议纪要都能被即时调用,减少反复查找的时间,也能降低因信息缺失带来的风险。这不仅是技术优化,更是提升组织效率和竞争力的基础。
2025-09-04 17:12:20
553
原创 人工智能基础——模型部分:模型介绍、模型训练和模型微调 !!
本文将从**什么是模型?什么是模型训练?什么是模型微调?**三个问题,来展开介绍人工智能基础的模型部分。模型族谱模型是一个函数:将现实问题转化为数学问题(Encoder编码器),通过求解数学问题来得到现实世界的解决方案(Decoder解码器)。,这个模型是一个函数,它根据输入数据(可以是文本、图像、语音、视频等)和一组参数(通常表示为权重)来预测输出。这里的输入和权重都是以数学形式(如矩阵或张量)表示的。
2025-09-03 18:14:02
680
原创 AI Agent与Agentic AI完全指南:从零开始构建智能体(附完整代码示例)
Agent经典定义为“任何能够通过传感器感知其环境,并通过执行器对其环境产生行动的事物”。[9]在AI领域,Agent被赋予了更强的智能特性,包括自主性、反应性、交互性、学习/适应性和主动性等。自主性:能够在没有人类或其他Agent直接干预的情况下,独立控制其内部状态和自身行为。反应性:能够感知其所处的环境,并对环境中发生的变化及时做出响应。交互性:能够通过某种Agent通信语言(ACL)或其他机制与其他Agent(包括人类)进行交互、协作、协商。学习/适应性。
2025-09-03 17:59:16
1096
原创 大模型交互技术详解:从基础Prompt到高级MCP协议
大模型 Agent 是指基于大型预训练模型(如 GPT-3、GPT -4、文心一言、通义千问等)构建的智能体,能够理解和生成自然语言。它以大型语言模型作为核心计算引擎,利用模型的语言理解、生成和推理能力,结合自主性、交互性、反应性和主动性等特点,使 AI 能够更加智能地应对各种任务,可看作是能够思考与行动的 “智能助手”,不仅理解需求,还能主动提供解决方案并付诸实践。
2025-09-03 17:56:51
903
原创 转行指南:Java程序员转型AI工程师必备技能与大模型学习资源全攻略,附大模型学习路线
数学基础:包括线性代数(矩阵运算、特征值/向量)、微积分(梯度、优化)和概率与统计(分布、假设检验、贝叶斯推断)。这些是AI算法的基础。编程语言:重点学习Python,因为它是AI开发的主流语言,Java开发者的编程经验能帮助快速上手。机器学习:了解监督学习、非监督学习、强化学习,掌握算法如线性回归、决策树、支持向量机(SVM)等。深度学习:学习神经网络(如卷积神经网络CNN、循环神经网络RNN、长短时记忆网络LSTM),并熟悉TensorFlow、PyTorch等框架。大型语言模型(LLM)
2025-09-02 17:10:18
638
原创 一文读懂MCP、RAG、Agent,全面解析大模型三大支柱
最近,AI 圈被三个词刷屏了 ——MCP、RAG、Agent!几乎每天都有新的相关工具冒出来,各大技术论坛、行业群聊得热火朝天。但不少朋友一看到这些术语就犯迷糊:它们到底是啥?能干啥?和我们普通人又有啥关系?别慌!今天就用最接地气的方式,带你彻底搞懂这些概念,看完秒变 AI 达人!
2025-09-01 17:16:10
834
原创 RAG-MCP:检索增强生成如何解决大模型工具选择的Prompt膨胀问题
明确定义工具调用时所需的各个输入参数的名称、数据类型、是否必需、取值范围或格式要求,以及工具执行成功或失败后返回结果的数据结构和含义。
2025-08-30 21:06:03
577
原创 普通人还适合入坑AI大模型吗?为什么这波AI浪潮没有带来大量
比如说做数字人的,就会发现技术发展实在太快了,他们找的人才刚学会GAN,就出现的image diffusion,然后是video diffusion,公司里那些卡可能连inference都养不起,拿上被新的公司拿着新的技术超越。我知道字节的seed团队对于LLM岗位的要求就是能手搓GRPO,DPO,PPO那些,并且还让你说出很多非常细节的东西,xAl,Meta的GenAl组也会要求手推diffusion的,code-面就是1-2个小时。为了帮助大家打破壁垒,快速了解大模型核心技术原理,学习相关大模型技术。
2025-08-30 21:01:43
754
原创 AI大模型学习路线(非常详细)收藏这一篇就够了!_AI大模型学习路线
自学AI大模型需要扎实的基础知识、系统的学习路线和持续的实践与探索。希望这条学习路线能为新手小白们提供一个清晰的方向,帮助大家更好地进入和发展在AI大模型领域。祝大家学习顺利,早日成为AI领域的专家!。
2025-08-29 21:31:58
604
原创 收藏必备!提示词工程完全指南:从小白到高手的15+实用技巧与框架,轻松掌握大模型交互
提示词工程,或称Prompt Engineering,是一种专门针对语言模型进行优化的方法。它的目标是通过设计和调整输入的提示词(prompt),来引导这些模型生成更准确、更有针对性的输出文本。在与大型预训练语言模型如GPT-3、BERT等交互时,给定的提示词会极大地影响模型的响应内容和质量。提示词工程关注于如何创建最有效的提示词,以便让模型能够理解和满足用户的需求。这可能涉及到对不同场景的理解、使用正确的词汇和语法结构,以及尝试不同的提示策略以观察哪种效果最佳。1、明确具体:加入场景要求、具体任务。
2025-08-28 17:14:53
1072
原创 零基础学大模型微调:Unsloth框架实战指南(小白必学,建议收藏)
从你早上睁眼看到的今日头条推荐,到深夜刷到的抖音神评,人工智能大模型已经成为我们工作生活不可或缺的部分。但通用模型在专业场景的"人工智障"表现,让微调技术成为专业领域AI落地的最后1公里。微调技术是指在预训练模型基础上,使用专业领域特定数据,指定特定方法对大模型参数进行调整,使其适应专业任务或领域。微调大模型可实现如下功能:更新 + 学习新知识:注入并学习新的特定领域信息,例如“法衡大模型”在Llama模型基础上使用法律文本微调,以进行合同分析、判例法研究和合规性检测。自定义行为。
2025-08-28 17:13:17
967
原创 大模型微调的7种方法,从LoRA到P-Tuning v2的实战指南,零基础入门大模型(非常详细)看一篇就够了
本篇文章深入分析了大型模型微调的基本理念和多样化技术,细致介绍了LoRA、适配器调整(Adapter Tuning)、前缀调整(Prefix Tuning)等多个微调方法。详细讨论了每一种策略的基本原则、主要优点以及适宜应用场景,使得读者可以依据特定的应用要求和计算资源限制,挑选最适合的微调方案。
2025-08-28 17:12:17
829
原创 2025 AI大模型学习指南:从入门到精通,助力大学生毕业即就业
人工智能已经成为了现代技术的重要组成部分,所以开发人员学习人工智能是非常必要的。人工智能是未来的趋势:人工智能已经成为了未来技术的趋势,它将会在各个领域发挥重要作用,包括医疗、金融、交通、教育等等。人工智能可以提高开发效率:人工智能可以自动化一些重复性的工作,比如数据分析、图像识别等等,这样可以提高开发效率,减少开发时间和成本。人工智能可以提高产品质量:人工智能可以通过分析数据和模式来预测和避免错误,从而提高产品的质量和可靠性。
2025-08-28 17:07:05
919
原创 从原理到实践:万字长文深入浅出教你优雅开发复杂AI Agent
Lambda: 它允许用户在工作流中嵌入自定义的函数逻辑。Lambda 组件底层是由输入输出是否流所形成的 4 种运行函数组成,对应 4 种交互模式,也是流式编程范式:InvokeStreamCollectTransform。一般用于在运行图中,进行输入输出格式化转化,以及插入一下业务的自定义逻辑,例如参数响应的格式化等等。AI Agent 的发展正处于爆发前夜,从最初的 LLM 聊天机器人,到具备规划、记忆、工具调用能力的智能体,再到多 Agent 协作的复杂生态,整个行业正在经历一场范式转变。
2025-08-27 21:49:59
564
原创 AI大模型落地指南:行业融合与平台实战(涵盖百度千帆、Hugging Face及多模态模型应用)
百度 的 文心千帆 大模型 的 模型广场 () 中 可以看到如下几个类型的大模型;下面对 上述 大模型类型 进行简单介绍 , 这些大模型类型收集的比较全;大模型类型 简介 :整合 文本 、 图像 、 音频 、 视频 等多种模态信息 , 实现跨模态理解与生成;基于 上下文 生成 连贯文本 , 支持创作、问答、摘要等任务;解决 复杂逻辑 推理问题 ( 数学计算、因果分析、多步决策 );从 文本 或 图像 输入 生成 高质量图像;识别 图像内容 ( 物体、场景、情感 ) 、 分析语义信息;
2025-08-25 20:43:09
1198
原创 AI大模型训练全解析:从零到一的创造之旅
从整体上看,训练LLM主要包括两个关键阶段:预训练(Pre-training)后训练(Post-training):微调、RL和RLHF。
2025-08-25 20:41:09
925
原创 2025 AI大模型学习指南:从入门到精通,助力大学生毕业即就业
人工智能已经成为了现代技术的重要组成部分,所以开发人员学习人工智能是非常必要的。人工智能是未来的趋势:人工智能已经成为了未来技术的趋势,它将会在各个领域发挥重要作用,包括医疗、金融、交通、教育等等。人工智能可以提高开发效率:人工智能可以自动化一些重复性的工作,比如数据分析、图像识别等等,这样可以提高开发效率,减少开发时间和成本。人工智能可以提高产品质量:人工智能可以通过分析数据和模式来预测和避免错误,从而提高产品的质量和可靠性。
2025-08-25 20:39:47
1317
原创 一文彻底搞懂大模型 - Fine-tuning三种微调方式
LoRA(Low-Rank Adaptation)通过分解预训练模型中的部分权重矩阵为低秩矩阵,并仅微调这些低秩矩阵的少量参数来适应新任务。
2025-08-22 20:41:37
884
原创 落地AI产品的最后一步:微调(面向非LLM算法工程师)
微调是指在已经训练好的大型预训练模型的基础上,进一步训练该模型以适应特定任务或特定领域的数据。相比从零开始训练一个模型,微调所需的数据和计算资源显著减少;可以在特定任务上取得更好的性能,因为模型在微调过程中会重点学习与任务相关的特性;可以在多种领域(如情感分析、问答系统等)上进行微调,从而快速适应不同应用场景。简单来说:微调 = 用你自己的数据,对通用大模型进行二次训练,让它专精于你的特定任务。需要注意的是:培训后,它主要更擅长你教的这一件事。
2025-08-22 20:40:02
681
原创 【文档智能 & RAG】RAG增强之路:增强PDF解析并结构化技术路线方案及思路
现阶段,尽管大模型在生成式问答上取得了很大的成功,但由于大部分的数据都是私有数据,大模型的训练及微调成本非常高,RAG的方式逐渐成为落地应用的一种重要的选择方式。然而,如何准确的对文档进行划分chunks,成为一种挑战,在现实中,大部分的专业文档都是以 PDF 格式存储,低精度的 PDF 解析会显著影响专业知识问答的效果。因此,本文将介绍针对pdf,介绍一些pdf结构化技术链路供参考。
2025-08-21 21:23:26
973
原创 【多模态&LLM】Reyes:一个从0到1开始训练的多模态大模型(技术报告)
选项: {‘A’: ‘120 m’, ‘B’: ‘122 m’, ‘C’: ‘123 m’, ‘D’: ‘121 m’}预测的答案: A正确的答案: A。
2025-08-21 21:21:08
1098
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人