- 博客(1488)
- 收藏
- 关注
原创 大模型rag技术,什么是RAG?大模型入门到精通,收藏这篇就够了_rag大模型
实现上下文压缩的一种方法是通过ContextChatEngine,它先检索与用户查询相关的上下文,然后将其与聊天历史一同从缓存发送给LLM,使LLM在生成答案时能意识到之前的上下文。检索时,获取较小的块,如果top-k检索的块中有超过n个块链接到同一个父节点,就用这个父节点替换提供给LLM的上下文。RAG系统始于文本文档语料库,基本流程为:将文本分块并嵌入向量,利用transformer编码器模型处理,对所有向量建立索引,并创建LLM提示语以指导模型回答用户查询,结合搜索步骤获取的上下文。
2025-06-12 18:59:56
404
原创 n8n - 工作流自动化
工作流自动化可以帮助组织减少人为错误,也可以释放员工的时间,让他们专注于更有价值的工作。作者之前有介绍过Postman Flows,允许你在协作环境中创建工作流、集成和自动化,而无需编写单行代码。n8n帮助你将任何具有API的应用程序与任何其他应用程序连接起来,并在很少或没有代码的情况下操作其数据,完成工作流自动化。继续添加操作步骤,例如添加if判断分支,将前面接口请求返回值存在时,为真。添加一个触发器,用于设置在什么场景下开始执行,之后再添加一个接口请求。编辑完成后的工作流,进行执行,执行成功。
2025-06-11 15:15:29
273
原创 Crawl4AI 部署安装及 n8n 调用,实现自动化工作流(保证好使)_crawl4ai安装部署
在大语言模型(LLM)和生成式 AI 爆发的今天,数据采集的效率与质量直接决定了 AI 应用的落地效果。传统爬虫工具在动态渲染处理、AI 友好输出和大规模部署上的局限性日益凸显,而专为 AI 设计的 Crawl4AI 框架正成为企业级数据管道的首选方案。Crawl4AI 是基于 Python 开发的开源智能爬虫框架,其核心设计理念是“为 AI 应用构建专属数据通道”。调度层:基于 asyncio 的自适应并发调度器,支持动态调整爬取并发数(单实例可稳定处理 5000 + 并发请求)渲染层。
2025-06-11 15:14:48
590
原创 Dify+DeepSeek-R1 我的超强AI工作流,详细的部署与使用实录_dify deepseek
上面演示的只是Dify最简单的聊天应用知识库和工作流的使用,还有更多的功能和工作流值得您挖掘,更多高级的用法玩Dify的工作流本身就像搭积木一样,用它来搭建各种有趣的 AI 应用。比如做一个智能客服,帮你自动回答客户的问题;或者做个私人助理,帮你整理文档、写邮件、做会议记录;甚至可以做个创意助手,帮你写文案、做营销策划、设计广告语。你不需要写复杂的代码,只要像拖拽积木一样,把不同的功能模块组合在一起,就能做出你想要的应用。它就像是给你一套 AI 魔法工具,让你能轻松地把脑子里的想法变成现实。
2025-06-10 14:40:38
701
原创 一文说清楚什么是多模态大模型,到底与大模型有什么区别
多模态大模型(LMMs)是能够理解和处理各种输入形式的 AI 模型。这些输入包括各种“模态”,如图像、视频和音频。模态是 AI 模型的数据。LMMs 模仿了人类与世界互动的方式。一个多模态系统可以在多种模态下生成输入和处理输出。例如,Gemini,由google开发的一个语言模型,可以通过将其训练过程整合不同类型的数据(如文本、视频和音频)来在多种模态下生成输入和处理输出,从而以多模态的方式理解和生成内容。假设你有一个超级聪明的机器人助手,它是一个多模态大模型。
2025-06-10 14:39:52
963
原创 什么是多模态?多模态大模型综述,看这一篇就够了
多模态大型语言模型(Multimodal Large Language Models, MLLM)的出现是建立在大型语言模型(Large Language Models, LLM)和大型视觉模型(Large Vision Models, LVM)领域不断突破的基础上的。随着 LLM 在语言理解和推理能力上的逐步增强,指令微调、上下文学习和思维链工具的应用愈加广泛。然而,尽管 LLM 在处理语言任务时表现出色,但在感知和理解图像等视觉信息方面仍然存在明显的短板。
2025-06-10 14:38:40
836
原创 RiOSWorld团队:多模态代理存在哪些安全风险?
RiOSWorld研究揭示:当前AI代理在真实计算机操作中安全风险极高,钓鱼网站识别失败率高达99.2%,80%以上代理会执行用户恶意指令。这项基准测试模拟492种风险场景,为构建可信AI系统提供关键安全镜鉴。内容由AI智能生成有用随着多模态大语言模型(MLLM)的迅猛发展,它们越来越多地被部署为能够完成复杂计算机任务的自主计算机使用代理。
2025-06-10 14:37:54
672
原创 LLM(大语言模型)——大模型简介_llm模型
语言建模的研究始于20世纪90年代,最初采用了统计学习方法,通过前面的词汇来预测下一个词汇。然而,这种方法在理解复杂语言规则方面存在一定局限性。随后,研究人员不断尝试改进,其中在2003年,深度学习先驱Bengio在他的经典论文《A Neural Probabilistic Language Model》中,首次将深度学习的思想融入到语言模型中,使用了更强大的神经网络模型,这相当于为计算机提供了更强大的“大脑”来理解语言。这种方法让模型可以更好地捕捉语言中的复杂关系,虽然这一步很重要,但仍有改进的空间。
2025-06-10 14:36:46
929
原创 彻底搞懂大模型“预训练”和“微调”两个概念
预训练模型和模型微调是深度学习领域中两个重要的概念,它们在提升模型性能和适应新任务方面发挥着关键作用。今天把这2个基础概念用通俗易懂的和大家展开来介绍下:模型预训练首先说说什么是预训练。预训练是指在大规模未标记的数据集上预先训练好的模型,其核心思想是通过在大量数据上学习通用特征表示,从而获得强大的基础能力。这些模型通常经过多轮迭代训练,捕捉数据中的底层模式、结构和语义知识。例如,在自然语言处理领域,GPT系和BERT系模型就是通过在大量文本数据上进行预训练,学习语言的上下文表示能力。
2025-06-10 14:35:48
851
原创 大模型训练全解析:预训练、微调、强化学习,一步到位!
2025年初,随着DeepSeek的迅速走红,公众对LLM(大语言模型)的兴趣急剧上升。许多人被LLM展现出的近乎魔法的能力所吸引。然而,这些看似神奇的模型背后究竟隐藏着什么秘密?接下来,我们将深入探讨LLM的构建、训练和微调过程,揭示它们如何从基础模型演变为我们今天所使用的强大AI系统。这篇文章是我一直想写的,如果你有时间,它绝对值得一读。:我们将介绍LLM的基础知识,涵盖从预训练到后训练的整个过程,探讨神经网络的工作原理、幻觉现象(Hallucinations)以及模型的推理机制。
2025-06-10 14:34:47
676
原创 预训练(Pre-training),人工智能领域的预训练是什么——AI教程
预训练是指在一个大规模的通用数据集上对模型进行初步训练,使其能够学习到丰富的特征表示。这个过程通常在没有监督(即没有明确的标签)的情况下进行,称为无监督预训练。经过预训练的模型可以捕捉到数据中的模式和结构,从而在后续的特定任务(如分类、回归等)中更有效地进行微调(fine-tuning)。
2025-06-10 14:31:45
901
原创 什么是 Prompt?——一篇详细的介绍
Prompt 是通过自然语言向 AI 模型传达指令的方式,可以是一个问题、一段描述、一个任务要求,或者其他任何形式的输入。这些输入帮助 AI 理解并执行特定的任务。换句话说,Prompt 就像是人类给 AI 模型提供的任务说明书。Prompt 在人工智能的应用中扮演着至关重要的角色,它是人类与 AI 模型之间的纽带。通过设计合适的 Prompt,用户能够更好地控制 AI 输出的内容,提高工作效率和结果的质量。随着生成式 AI 的不断发展,Prompt 的设计将越来越成为高效利用 AI 技术的核心技能之一。
2025-06-10 14:31:00
960
原创 AI大模型之Prompt工程指南:什么是Prompt工程?Prompt工程的格式与要求_prompt人工智能
Prompt是一种基于人工智能(AI)指令的技术,通过明确而具体的指导语言模型的输出。在提示词工程中,Prompt的定义涵盖了任务、指令和角色三个主要元素,以确保模型生成符合用户需求的文本。Prompt明确而简洁地陈述了用户要求模型生成的内容。这包括在特定应用场景中,用户希望模型完成的任务或生成的文本类型。模型在生成文本时应遵循的指令是Prompt中的关键要素之一。这些指令具体规定了模型生成文本的方式,通过清晰的语言来引导模型以获得所需的输出。Prompt中还包括模型在生成文本时应扮演的角色。
2025-06-10 14:30:17
705
原创 RLHF(人类反馈强化学习)是什么?
当 ChatGPT 推出时,公众看到了人工智能 (AI) 和大型语言模型 (LLM) 的未来。乍一看,ChatGPT 看起来与常规聊天机器人相似,区别在于它以一种与人类极其相似的方式进行对话。通过连贯而明智地回答问题和陈述,ChatGPT 给机器学习工程师和非技术群体都留下了深刻的印象。那么,ChatGPT 成功背后的原因是什么?答案很大程度上在于来自人类反馈的强化学习 (RLHF)。在开发 ChatGPT 时,OpenAI 将 RLHF 应用于 GPT 模型,以生成用户想要的响应。否则,ChatGPT 可
2025-06-10 14:29:15
732
原创 一文读懂「RLHF」基于人类反馈的进行强化学习
RLHF(Reinforcement Learning from Human Feedback)就是基于人类反馈(Human Feedback)对语言模型进行强化学习(Reinforcement Learning),和一般的fine-tune过程乃至prompt tuning自然也不同。多种策略产生样本并收集人类反馈训练奖励模型训练强化学习策略,微调 LM首先需要一个预训练语言模型,通过大量的语料去训练出基础模型,对于ChatGPT来说就是GPT-3。
2025-06-10 14:27:49
553
原创 大模型基础-简易理解版-SFT_sft 大模型
SFT是一种在预训练大模型基础上,使用有标签的特定任务数据进一步优化模型的方法。通过这种方式,模型能够将通用语言理解能力迁移到具体任务中(如问答、翻译等),显著提升任务表现。如果把预训练大模型比作一个天赋异禀的荒野探险家,那么SFT(监督微调)就像是给它佩戴了一副专业护目镜。这副眼镜的镜片由海量标注数据打磨而成,能让原本"视力5.0"的通用AI,瞬间获得透视特定任务迷雾的超能力。
2025-06-10 14:27:17
753
原创 小白入门大模型:LangChain
模型在高层次上有两种不同类型的模型:语言模型(language models)和文本嵌入模型(text embedding models)。文本嵌入模型将文本转换为数字数组,然后我们可以将文本视为向量空间。在上面这个图像中,我们可以看到在一个二维空间中,“king”是“man”,“queen”是“woman”,它们代表不同的事物,但我们可以看到一种相关性模式。这使得语义搜索成为可能,我们可以在向量空间中寻找最相似的文本片段,以满足给定的论点。
2025-06-10 14:26:36
632
原创 【AI Agents实战项目】一文带你入门LangGraph!
LangGraph中,使用StateGraph类来表示一个图。在初始化StateGraph之前,我们需要定义一个State schema,它可以是Python中任何带有getattr()方法的对象,比如字典、类或者Pydantic对象。TypedDict:速度很快,但不支持默认值dataclass:也很快,支持state.foo的访问方式,支持默认值Pydantic:速度较慢,但支持数据验证让我们从一个简单的例子开始。import sys。
2025-06-09 10:52:56
1189
原创 大模型rag技术,什么是RAG?大模型入门到精通,收藏这篇就够了_rag大模型
RAG(Retrieval-Augmented Generation)即检索增强生成,为大模型提供了从特定数据源检索到的信息,以此来修正和补充生成的答案。
2025-06-09 10:51:37
541
原创 AI开发者的算力革命:GpuGeek平台全景实战指南(大模型训练推理微调全解析)
在软件开发和系统部署过程中,预置镜像库(Pre-configured Image Repository)是一种预先配置好的、包含特定软件环境和依赖项的镜像集合,旨在简化开发环境的搭建和应用程序的部署流程。预置镜像库通常由企业、开源社区或云服务提供商维护,用户可以直接从中获取所需的镜像,而无需从零开始配置环境。模型市场是一个专门用于交易、共享和部署机器学习模型的在线平台,旨在为开发者、数据科学家和企业提供便捷的模型获取与使用渠道。它类似于一个“应用商店”,但专注于人工智能和机器学习领域。
2025-06-07 14:49:46
986
原创 GpuGeek 网络加速:破解 AI 开发中的 “最后一公里” 瓶颈
GpuGeek 的网络加速功能不仅解决了 “能不能访问” 的基础问题,更通过精细化的流量管理、全球化的节点布局、智能化的成本控制,构建了一套适配 AI 开发全流程的网络解决方案。当算力与网络效率形成协同,开发者得以彻底摆脱基础设施的桎梏,将精力聚焦于算法创新与模型优化。立即体验 GpuGeek 网络加速GpuGeek官网地址在 AI 开发的竞速赛中,网络加速已成为决定胜负的关键赛道。GpuGeek 用技术创新证明:当每一个数据请求都能以最优路径抵达,AI 的无限可能正从这里开始。
2025-06-07 14:47:49
786
原创 大模型之Spring AI实战系列(二):Spring Boot + OpenAI 打造聊天应用全攻略
在当前人工智能技术迅猛发展的时代背景下,大语言模型(LLM)已然成为企业级应用不可或缺的重要组成部分。Spring AI作为Spring官方推出的AI开发框架,极大地简化了与大型语言模型的集成流程,使得开发者能够将更多精力聚焦于业务逻辑的设计与实现。
2025-06-07 14:44:23
894
原创 【金仓数据库征文】学校AI数字人:从Sql Server到KingbaseES的数据库转型之路
针对数据类型转换问题,采取了手动调整和编写转换脚本相结合的方法。对于 bit 类型数据,在迁移前,仔细检查数据迁移工具的配置,针对不同的安装模式,手动设置数据转换规则。例如,基于 MySQL 安装时,在迁移工具的配置中,添加自定义的转换规则,将 0,1 转换为 0x00,0x01;基于 Oracle 安装时,同样添加相应的转换规则。对于 nvarchar 类型转换为 text 类型可能带来的问题,在应用程序中,对涉及字符类型和长度判断的代码进行调整,确保其能够适应新的类型转换。
2025-06-07 14:43:34
939
原创 AI终结传统编程?未来程序员必看
【前言】在数字化浪潮席卷全球的今天,以人工智能、大数据、云计算为代表的新一代信息技术正在加速改变各行各业。特别是在软件开发领域,AI技术的突飞猛进正在深刻重塑传统编程领域的工作方式和行业格局。根据Gartner最新研究报告显示,到2025年,将有超过50%的企业软件开发工作将由AI辅助完成。
2025-06-07 14:42:48
613
原创 调用蓝耘API打造AI 智能客服系统实践教程
在用户与人工客服的沟通中,等待时间长、需求难满足等问题频发,企业面临用户流失风险,用户渴望快速精准的答案,企业需要“开源节流”、“降本增效”。对此,利用 AI 大模型打造智能客服成为主流解决方案。本次将借助蓝耘 Maas 平台,调用大模型 API,实操构建一个具备知识库的 AI 智能客服系统,有效化解沟通难题。下面为大家做一个简要介绍。什么是MaaS平台?
2025-06-07 14:41:57
842
原创 探索GpuGeek:AI开发者与中小企业的算力宝藏平台
GpuGeek 平台凭借其丰富的算力资源、多元的框架工具、强大的模型市场、高效的推理性能以及灵活的微调功能,在深度学习项目、大模型研究、模型推理与微调以及垂直 AI 领域项目实战等方面都展现出了卓越的优势。其充足的显卡资源、广泛分布的节点、高性价比的服务、超多的镜像资源、丰富的模型市场、快速的实例创建、便捷的 Github 学术加速以及灵活的计费模式,为 AI 开发者和中小企业提供了全方位、一站式的 AI 赋能解决方案。
2025-06-07 14:40:02
1011
原创 【AI大模型前沿】TxGemma:谷歌推出的高效药物研发大模型,临床试验预测准确率超90%
在药物研发领域,高成本和高风险一直是困扰科学家们的难题。传统的药物研发过程繁琐且耗时,常常需要数年时间才能取得突破性进展。为了加速这一进程,谷歌推出了TxGemma,这是一款基于Gemma 2的高效、通用型大型语言模型(LLM),专门用于药物研发。TxGemma不仅能够进行药物特性预测,还具备对话能力和推理能力,为科学家们提供了一个强大的工具,帮助他们更高效地进行药物研发。TxGemma是谷歌推出的一款高效、通用的药物研发大模型,基于Gemma 2架构微调,融合了700万治疗实体数据进行多任务学习。
2025-06-07 14:37:28
676
原创 GpuGeek 大模型教程:凭借镜像与资源优势,带你畅行垂直 AI 领域
GpuGeek平台作为AI领域的重要力量,在提供算力支持、技术服务、资源共享等方面有着突出表现,为AI产业发展和创新提供了有力支撑。GpuGeek是面向算法工程师的一站式AI Infra平台。资源丰富,提供消费级到专业级的全系列GPU,裸金属服务器避免虚拟化损耗。使用便捷,注册到实例创建半分钟完成,内置主流框架,支持8卡GPU灵活配置。计费灵活,秒级计费,还有包天、包周等模式,降低成本。提供海量镜像与开源数据,助力模型开发,节点覆盖国内外,为全球用户提供低延迟的稳定服务,满足多元需求。
2025-06-07 14:36:30
1038
原创 Spring AI进阶:AI聊天机器人之ChatMemory持久化(二)_spring ai chatmemory
1. 核心架构Spring AI + DeepSeek模型 + Redis持久化└─ ChatClient API层 → 记忆管理 → Redis存储 → 会话服务2. 关键技术栈多态序列化:Jackson自定义TypeResolver + 类型白名单上下文管理:MessageChatMemoryAdvisor + 滑动窗口策略持久化方案:Redis Hash结构 + TTL自动过期。
2025-06-07 14:34:48
784
原创 Qwen-3 微调实战:用 Python 和 Unsloth 打造专属 AI 模型
大型语言模型,简单来说,就是深度学习架构(如)的一个漂亮实现,它被大量语言文本数据喂养或训练。Qwen3通过在许多现有的最佳大型语言模型中脱颖而出,包括 DeepSeek-R1、o1、Gemini-2.5-pro 等,占据了竞争地位。微调 LLM是一个过程,即向模型提供一些特定于任务的数据,以量身定制其响应,从而提高其准确性,并使其响应更加专门化和特定于领域。表示用于标记多轮对话的骨架,以确保模型正确区分系统、用户和助手消息。我们使用的主要 Python 库和框架是unslothtorch和。
2025-06-07 14:33:48
860
原创 AI 驱动 + 亮数据赋能:揭秘亚马逊电商数据高效爬取的技术密码_ai做数据爬取
亮数据(Bright Data)是一款专注于提供先进网络数据抓取和解析服务的平台,它为用户提供了多种工具和技术,帮助他们在复杂的数据收集环境中快速、准确地获取所需的数据。通过亮数据的服务,用户可以轻松应对常见的抓取难题,如IP限制、验证码、动态内容加载等问题。亮数据的优势之一在于其强大的爬虫技术。平台支持各种数据源的抓取,包括但不限于电商平台、社交媒体、搜索引擎等。无论是基于URL的抓取,还是通过关键字和搜索结果进行数据挖掘,亮数据都能提供高效且可靠的解决方案。
2025-06-07 14:33:04
1035
原创 用DeepSeek和Cursor从零打造智能代码审查工具:我的AI编程实践
Prompt工程法则使用"角色-任务-约束-示例"四段式结构为常用操作建立prompt模板库(已开源52个精选prompt)质量控制机制设置AI代码的"三重验证"流程:静态分析检查单元测试覆盖人工重点复核性能平衡点找到响应质量与速度的最佳平衡(我们的选择:800-1200ms响应时间)安全防护实现AI生成代码的沙箱执行环境敏感信息自动过滤机制团队协作模式建立"AI驾驶员+人类领航员"的结对编程新范式持续学习系统每日自动收集反馈数据更新模型每周进行效果评估和规则调整。
2025-06-07 14:31:49
1044
原创 腾讯云大模型知识引擎 + DeepSeek:打造懒人专属的谷歌浏览器翻译插件
在当今信息爆炸的时代,阅读外文资料已成为获取前沿知识的重要方式。然而,频繁切换翻译工具的繁琐过程常常打断我的阅读节奏,让我感到困扰。于是,我萌生了一个想法:利用腾讯云大模型知识引擎(DeepSeek)开发一款谷歌浏览器翻译插件,让翻译变得轻松又高效。开发这款插件的过程充满了挑战与成就感。我首先深入了解了腾讯云大模型知识引擎的强大功能,它不仅能精准翻译单词和句子,还能理解上下文语义,支持多种语言互译。通过研究API文档,我掌握了接口的调用方式,并用curl和Apifox进行接口测试,确保其稳定性和准确性。
2025-06-07 14:31:09
912
原创 AI革命先锋:DeepSeek与蓝耘通义万相2.1的无缝融合引领行业智能化变革_deep seek +通义
是一款面向深度学习和人工智能研究的高级平台,旨在为研究人员、数据科学家和开发者提供全面的技术支持。DeepSeek的强大之处在于其深度学习框架的兼容性和丰富的模型训练功能,使得用户能够轻松构建、训练和调优复杂的深度学习模型。
2025-06-07 14:29:05
779
原创 coze功能详解!AI保姆级入门教程!_coze教程
本地文档包含三种:1、文本格式:word, pdf, txt2、表格格式:excel, csv3、照片类型以上传本地文档为例,上传后,选择自动分段与清洗,coze会自动对数据进行处理上传后,我们在bot或工作流中,就能使用该知识库。
2025-06-06 14:57:37
1021
原创 SOTA多模态大模型!13个开源模型汇总,附论文和代码_开源多模态大模型
近年来,多模态大模型(Multimodal Large Language Models, MLLMs)在人工智能领域取得了显著的进展,特别是在自然语言处理、计算机视觉和多模态理解方面。这些模型能够理解和生成多种类型的数据,如文本、图像、音频和视频,为多模态学习和应用提供了强大的工具。今天给大家汇总了13个开源多模态大模型,这些模型在各自的领域中刷新了多个SOTA记录,每个模型都将附上相关的论文和代码,一起看看多模态大模型的最新研究成果吧!论文PDF和开源代码都整理好了😝有需要的小伙伴,可以保存图片到。
2025-06-06 14:55:54
998
原创 可能是最全的开源 LLM (大语言模型)整理_开源llm模型
Large Language Model (LLM) 即大规模语言模型,是一种基于深度学习的自然语言处理模型,它能够学习到自然语言的语法和语义,从而可以生成人类可读的文本。所谓 “语言模型”,就是只用来处理语言文字(或者符号体系)的 AI 模型,发现其中的规律,可以根据提示 (prompt),自动生成符合这些规律的内容。LLM 通常基于神经网络模型,使用大规模的语料库进行训练,比如使用互联网上的海量文本数据。
2025-06-06 14:54:20
892
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人