借助redis实现对IP限流

背景:

若依前后端分离项目(vue+springboot+springmvc+mybatis),redis。

需求:

借助redis实现对IP限流。
实现:
参考

分布式—基于Redis进行接口IP限流

代码如下:

IPLimiter.java 定义注解类,将注解定义在需要分流IP的接口上

import java.lang.annotation.*;

@Target(ElementType.METHOD)
@Retention(RetentionPolicy.RUNTIME)
@Documented
public @interface IpLimiter {
    /**
     * 放行ip
     */
    String[] ipAdress() default {""};
    /**
     * 单位时间限制通过请求数
     */
    long limit() default 10;
    /**
     * 单位时间,单位秒
     */
    long time() default 1;
    /**
     * 达到限流提示语
     */
    String message();

    /**
     * 是否锁住IP的同时锁住URI
     */
    boolean lockUri() default false;
}

IpLimterHandler.java 注解AOP处理。

import com.missionex.common.annotation.IpLimiter;
import com.missionex.common.core.domain.AjaxResult;
import com.missionex.common.utils.DateUtils;
import com.missionex.common.utils.SecurityUtils;
import com.missionex.common.utils.http.IPAddressUtils;
import org.aspectj.lang.ProceedingJoinPoint;
import org.aspectj.lang.Signature;
import org.aspectj.lang.annotation.Around;
import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.reflect.MethodSignature;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.core.io.ClassPathResource;
import org.springframework.data.redis.core.StringRedisTemplate;
import org.springframework.data.redis.core.script.DefaultRedisScript;
import org.springframework.scripting.support.ResourceScriptSource;
import org.springframework.stereotype.Component;
import org.springframework.web.context.request.RequestContextHolder;
import org.springframework.web.context.request.ServletRequestAttributes;

import javax.annotation.PostConstruct;
import javax.servlet.http.HttpServletRequest;
import java.util.ArrayList;
import java.util.List;

@Aspect
@Component
public class IpLimterHandler {

    private static final Logger LOGGER = LoggerFactory.getLogger("request-limit");

    @Autowired
    StringRedisTemplate redisTemplate;


    /**
     * getRedisScript 读取脚本工具类
     * 这里设置为Long,是因为ipLimiter.lua 脚本返回的是数字类型
     */
    private DefaultRedisScript<Long> getRedisScript;

    @PostConstruct
    public void init() {
        getRedisScript = new DefaultRedisScript<>();
        getRedisScript.setResultType(Long.class);
        getRedisScript.setScriptSource(new ResourceScriptSource(new ClassPathResource("ipLimiter.lua")));
        LOGGER.info("IpLimterHandler[分布式限流处理器]脚本加载完成");
    }

    /**
     * 这个切点可以不要,因为下面的本身就是个注解
     */
//    @Pointcut("@annotation(com.jincou.iplimiter.annotation.IpLimiter)")
//    public void rateLimiter() {}

    /**
     * 如果保留上面这个切点,那么这里可以写成
     * @Around("rateLimiter()&&@annotation(ipLimiter)")
     */
    @Around("@annotation(ipLimiter)")
    public Object around(ProceedingJoinPoint proceedingJoinPoint, IpLimiter ipLimiter) throws Throwable {
        if (LOGGER.isDebugEnabled()) {
            LOGGER.debug("IpLimterHandler[分布式限流处理器]开始执行限流操作");
        }
        String userIp = null;
        String requestURI = null;
        try {
            // 获取请求信息
            HttpServletRequest request = ((ServletRequestAttributes) RequestContextHolder.getRequestAttributes()).getRequest();
            requestURI = request.getRequestURI();
            String requestMethod = request.getMethod();
            String remoteAddr = request.getRemoteAddr();
            // 获取请求用户IP
            userIp = IPAddressUtils.getIpAdrress(request);
            if (userIp == null) {
                return AjaxResult.error("运行环境存在风险");
            }
        } catch (Exception e) {
            LOGGER.error("获取request出错=>" + e.getMessage());
            if (userIp == null) {
                return AjaxResult.error("运行环境存在风险");
            }
        }
        Signature signature = proceedingJoinPoint.getSignature();
        if (!(signature instanceof MethodSignature)) {
            throw new IllegalArgumentException("the Annotation @IpLimter must used on method!");
        }
        /**
         * 获取注解参数
         */
        // 放行模块IP
        String[] limitIp = ipLimiter.ipAdress();
        int len;
        if (limitIp != null && (len = limitIp.length) != 0) {
            for (int i = 0; i < len; i++) {
                if (limitIp[i].equals(userIp)) {
                    return proceedingJoinPoint.proceed();
                }
            }
        }
        // 限流阈值
        long limitTimes = ipLimiter.limit();
        // 限流超时时间
        long expireTime = ipLimiter.time();
        boolean lockUri = ipLimiter.lockUri();
        if (LOGGER.isDebugEnabled()) {
            LOGGER.debug("IpLimterHandler[分布式限流处理器]参数值为-limitTimes={},limitTimeout={}", limitTimes, expireTime);
        }
        // 限流提示语
        String message = ipLimiter.message();
        /**
         * 执行Lua脚本
         */
        List<String> ipList = new ArrayList();
        // 设置key值为注解中的值
        if (lockUri) {
            ipList.add(userIp+requestURI);
        } else {
            ipList.add(userIp);
        }
        /**
         * 调用脚本并执行
         */
        try {
            Object x = redisTemplate.execute(getRedisScript, ipList, expireTime+"", limitTimes+"");
            Long result = (Long) x;
            if (result == 0) {
                Long userId = null;
                try {
                    userId = SecurityUtils.getLoginUser().getAppUser().getId();
                } catch (Exception e) {

                }
                LOGGER.info("[分布式限流处理器]限流执行结果-ip={}-接口={}-用户ID={}-result={}-time={},已被限流", userIp,requestURI == null?"未知":requestURI
                        ,userId==null?"用户未登录":userId,result, DateUtils.getTime());
                // 达到限流返回给前端信息
                return AjaxResult.error(message);
            }
            if (LOGGER.isDebugEnabled()) {
                LOGGER.debug("IpLimterHandler[分布式限流处理器]限流执行结果-result={},请求[正常]响应", result);
            }
            return proceedingJoinPoint.proceed();
        } catch (Exception e) {
            LOGGER.error("限流错误",e);
            return proceedingJoinPoint.proceed();
        }

    }
}

ipLimiter.lua 脚本,放在resources文件夹中。

-获取KEY
local key1 = KEYS[1]

local val = redis.call('incr', key1)
local ttl = redis.call('ttl', key1)

--获取ARGV内的参数并打印
local expire = ARGV[1]
local times = ARGV[2]

redis.log(redis.LOG_DEBUG,tostring(times))
redis.log(redis.LOG_DEBUG,tostring(expire))

redis.log(redis.LOG_NOTICE, "incr "..key1.." "..val);
if val == 1 then
    redis.call('expire', key1, tonumber(expire))
else
    if ttl == -1 then
        redis.call('expire', key1, tonumber(expire))
    end
end

if val > tonumber(times) then
    return 0
end
return 1

RedisConfig.java redis配置(该配置继承了CachingConfigurerSupport)中对写入redis的数据的序列化。
如果使用IP锁的时候,错误出现在了AOP中的使用脚本写入redis的时候(像什么Long无法转String的错误),基本是这边序列化没配好。

	@Bean
    @SuppressWarnings(value = { "unchecked", "rawtypes" })
    public RedisTemplate<Object, Object> redisTemplate(RedisConnectionFactory connectionFactory)
    {
        RedisTemplate<Object, Object> template = new RedisTemplate<>();
        template.setConnectionFactory(connectionFactory);
        FastJson2JsonRedisSerializer serializer = new FastJson2JsonRedisSerializer(Object.class);
        // 使用StringRedisSerializer来序列化和反序列化redis的key值
        template.setKeySerializer(new StringRedisSerializer());
        template.setValueSerializer(serializer);
        // Hash的key也采用StringRedisSerializer的序列化方式
        template.setHashKeySerializer(new StringRedisSerializer());
        template.setHashValueSerializer(serializer);
        template.afterPropertiesSet();
        return template;
    }

使用示范。

@PostMapping("/test")
    @IpLimiter(limit = 2, time = 5, message = "您访问过于频繁,请稍候访问",lockUri = true)
    public AjaxResult test(@RequestBody Map map){
        //代码......
    }
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值