毕业设计 机器视觉opencv答题卡识别系统


0 前言

🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。

为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天要分享的是

🚩 毕业设计 答题卡识别系统 - opencv python 图像识别

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:3分

🧿 选题指导, 项目分享:

https://gitee.com/dancheng-senior/project-sharing-1/blob/master/%E6%AF%95%E8%AE%BE%E6%8C%87%E5%AF%BC/README.md

课题简介

今天我们来介绍一个与机器视觉相关的毕业设计

基于机器视觉的答题卡识别系统

多说一句, 现在越来越多的学校以及导师选题偏向于算法类, 这几年往往做web系统的同学很难通过答辩, 仔细一想这也在情理之中, 毕业设计是大学四年技术水平的体现, 只做出个XXX管理系统未免太寒酸, 而且web系统选题每年都是那几个老师看着也吐了, 不卡学生才怪

所以同学们, 毕设选题要慎重, 最好先找已经毕业了的学长学姐们了解一下, 至少弄清自己做的系统会被老师问到什么问题, 不然只会为自己的毕业挖坑而已

什么是机器视觉

答题卡识别使用的是机器视觉识别算法, 那什么是机器视觉算法呢?

机器视觉,并不是视觉,他不具有人类的视觉理解能力,说穿了他只是图像处理技术的工程应用,都是由工程师开发的算法来完成任务,并且是特定的算法完成特定的任务,互相之间没有通用性。

废话不多说, 学长到大家看看, 这项技术实现的效果如何.

实现步骤

答题卡识别步骤:

  • Step #1: 检测到图片中的答题卡
  • Step #2: 应用透视变换来提取图中的答题卡(以自上向下的鸟瞰视图)
  • Step #3: 从透视变换后的答题卡中提取 the set of 气泡/圆点 (答案选项)
  • Step #4: 将题目/气泡排序成行
  • Step #5: 判断每行中被标记/涂的答案
  • Step #6: 在我们的答案字典中查找正确的答案来判断答题是否正确
  • Step #7: 为其它题目重复上述操作

首先,打开摄像头扫描答题卡
在这里插入图片描述

对摄像头获取到的答题卡图片进行二值化腐蚀膨胀边缘检测
在这里插入图片描述

轮廓计算,进行顶点对齐,得到下图

在这里插入图片描述

对图像进行倾斜变换和仿射变换,得到下图

在这里插入图片描述

开始对图像进行二值化,边缘检测等操作,最终得到结果
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

最后

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值