题目来自leetcode:链接
输入某二叉树的前序遍历和中序遍历的结果,请重建该二叉树。假设输入的前序遍历和中序遍历的结果中都不含重复的数字。
例如,给出
前序遍历 preorder = [3,9,20,15,7]
中序遍历 inorder = [9,3,15,20,7]
结果:
3
/ \
9 20
/ \
15 7
解题思路
根据前序遍历,最开始为当前父节点,再从中序遍历中找到这个节点,左边就是左子树,右边就是右子树,需要用递归实现,再回归前序遍历进入左子树找到左子树的根节点,在去中序遍历中找左子树的根节点,又把左子树分成左右两颗子树
代码
def buildTree(self, preorder: List[int], inorder: List[int]) -> TreeNode:
self.dic, self.po = {}, preorder
for i in range(len(inorder)):
self.dic[inorder[i]] = i
return self.recur(0, 0, len(inorder) - 1)
def recur(self, pre_root, in_left, in_right):
if in_left > in_right:
return None # 终止条件:中序遍历为空
root = TreeNode(self.po[pre_root]) # 建立当前子树的根节点
i = self.dic[self.po[pre_root]] # 搜索根节点在中序遍历中的索引,从而可对根节点、左子树、右子树完成划分。
root.left = self.recur(pre_root + 1, in_left, i - 1) # 开启左子树的下层递归
root.right = self.recur(i - in_left + pre_root + 1, i + 1, in_right) # 开启右子树的下层递归
return root # 返回根节点,作为上层递归的左(右)子节点