【20221119】【每日一题】N皇后

按照国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子。

n 皇后问题 研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击。

给你一个整数 n ,返回所有不同的 n 皇后问题 的解决方案。

每一种解法包含一个不同的 n 皇后问题 的棋子放置方案,该方案中 'Q' 和 '.' 分别代表了皇后和空位。


思路:1、初始化棋盘,将所有的位置都变为' .  '      vector<string> chessboard(n,string(n,'.'));

           2、判断位置是否合法,只需要考虑到当前行之前的部分,因为Q依据行从上而下填,下面肯定没有皇后;

           3、这里的终止条件,row是从0开始的,row==n了就代表最后一行n-1已经处理过了。

class Solution {
private:
    //3维   不同的棋盘
    vector<vector<string>> result;
public:
    //判断这个点放皇后是否合法
    bool isValid(vector<string>& chessboard,int row,int col,int n){
        //判断列是否合法
        //因为是从上而下放的皇后,所以下面肯定没有
        for(int i=0;i<row;i++)
        {
            if(chessboard[i][col]=='Q') return false;
        }
        //判断左斜线是否合法
        for(int i=row-1,j=col-1;i>=0&&j>=0;i--,j--)
        {
            if(chessboard[i][j]=='Q')   return false;
        }
        //判断右斜线是否合法
        for(int i=row-1,j=col+1;i>=0&&j<n;i--,j++)
        {
            if(chessboard[i][j]=='Q')   return false;
        }
        return true;
    }

    void backtracking(vector<string>& chessboard,int n,int row){
        //终止条件
        if(row==n)
        {
            result.push_back(chessboard);
            return;
        }
        //单层处理
        for(int i=0;i<n;i++)
        {
            if(isValid(chessboard,row,i,n))
            {
                chessboard[row][i]='Q';
                backtracking(chessboard,n,row+1);
                chessboard[row][i]='.';//回溯
            } 
            else continue;
        }
    }

    vector<vector<string>> solveNQueens(int n) {
        result.clear();
        //初始化一个棋盘
        vector<string> chessboard(n,string(n,'.'));
        backtracking(chessboard,n,0);
        return result;
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值