给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
示例
输入: [-2,1,-3,4,-1,2,1,-5,4],
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。
这里我主要采用了暴力法、动态规划、以及贪心算法。其中动态规划与贪心算法的时间复杂度都是O(n),并且算法的思路非常相似,而暴力破解的复杂度相对较高,为O(n2)。当然,LeetCode题解中还有关于分治法的相关题解,以为时间复杂度不如动态规划与贪心算法,因此这里不再提及,如果想要了解分治法的朋友可以去LeetCode题解中查看详细思路。
方法一:暴力破解-----O(n2)
private int maxSubArray(int[] nums) {
//初始最大值
int max=nums[0];
//第一次遍历数组
for (int i = 0; i <nums.length ; i++) {
//每次一遍历,sum初始都为0
int sum=0;
//遍历数组,求和
for (int j = i; j <nums.length ; j++) {
//求和
sum+=nums[j];
if (sum>max)
{
max=sum;
}
}
}
return max;
}
暴力破解的时间复杂度最大,当然思路也最简单。
首先使两边遍历数组,第一遍的目的是使每一个数组元素都能够当子序列的头部元素,第二遍的目的是为了能够获得全部的子序列组合。
当获得了全部的子序列组合,便可以将他们的和得出,从而得出最大的子序列和。
方法二:贪心法-----O(n)
private int maxSubArray(int[] nums)
{
//当前连续和
int currentSum;
//之前连续
int preSum=0 ;
//最大连续和
int maxSum=nums[0];
for (int num : nums) {
if (preSum <= 0) {
//若之前和小于0,则丢弃之前和,并将当前所指元素赋予currentSum
currentSum = num;
} else {
//若之前和大于0,则将之前和与当前相加
currentSum = preSum + num;
}
if (currentSum > maxSum) {
maxSum = currentSum;
}
preSum = currentSum;
}
return maxSum;
}
贪心法的主要思想是:遍历数组,并计算序列和,若当前选择元素之前的序列和小于0,则丢弃当前元素之前的数列。
因为如果之前的序列和(preSum)小于0,则之前的序列和(preSum)对当前所选元素并无增益。换句话说,当之前序列和小于0的序列与当前元素组成新的序列,那么新的序列和(currentSum)只会小于当前元素的值,那么这次相加就无意义了。因此要丢弃之前的序列和,将当前所选元素定义为新的序列和的第一个元素
方法三:动态规划-----O(n)
private int maxSubArray(int[] nums){
//之前有效的序列和
int preNum=nums[0];
//最大序列和
int maxNum=nums[0];
for (int i = 1; i <nums.length ; i++) {
if (preNum>0)
{
//当preNum大于0,则preNum变为preNum+nums[i](加上当前元素)
preNum+=nums[i];
}
else
{
//当preNumx小于0,则抛弃之前序列和,使preNum为当前元素
preNum = nums[i];
}
//获取最大序列和
maxNum = Math.max(maxNum,preNum);
}
return maxNum;
}
在这道题中,动态规划法与贪心法实质上是相同的,只是思考的思路有所不同。
动态规划的主要思想:若前一个元素大于0,则将其加到当前元素上。否则,保持当前元素值不变。
如同贪心法所说,如果之前的序列和小于0,则对当前元素并无增益。在动态规划中也是一样的,若之前的元素小于0,则对当前元素并无增益;如果大于0,则对当前元素有增益,加到当前元素上,实质上是将贪心中的序列和转化到元素值上。如果你能看懂上面的贪心法,那么动态规划你一定可以看懂。