给定一个长度为 n 的环形整数数组 nums ,返回 nums 的非空 子数组 的最大可能和 。
环形数组 意味着数组的末端将会与开头相连呈环状。形式上, nums[i] 的下一个元素是 nums[(i + 1) % n] , nums[i] 的前一个元素是 nums[(i - 1 + n) % n] 。
子数组 最多只能包含固定缓冲区 nums 中的每个元素一次。形式上,对于子数组 nums[i], nums[i + 1], …, nums[j] ,不存在 i <= k1, k2 <= j 其中 k1 % n == k2 % n
示例
示例一
输入:nums = [1,-2,3,-2]
输出:3
解释:从子数组 [3] 得到最大和 3
示例二
输入:nums = [5,-3,5]
输出:10
解释:从子数组 [5,5] 得到最大和 5 + 5 = 10
示例三
输入:nums = [3,-2,2,-3]
输出:3
解释:从子数组 [3] 和 [3,-2,2] 都可以得到最大和 3
方法一 利用maxSum和minSum来计算
由题可知,最大连续子数组的位置有两种情况
情况一:在数组内,不成环
情况二:在数组两端成环
对于情况一,可以参考leetcode 53题最大子数组和
下面分析第二种情况
可知数组的总和是一定的,如果存在最大子数组,那么剩余部分的数字总和一定是最小的,我们用反证法来证明:
设数组总和为sum,最大字数和为max,剩余部分和为other,那么就有个
max + other = sum
如果other不是最小连续子数组,那么存在最小连续子数组,其和为min,其中:
min < other
那么其他剩余的部分的和一定大于max:
sum - min > sum - other
此时max就不是最大连续子数组
class Solution {
public int maxSubarraySumCircular(int[] nums) {
int iMax = Integer.MIN_VALUE;
int iMin = Integer.MAX_VALUE;
int iMaxSum = 0;
int iMinSum = 0;
int total = 0;
for(int num : nums)
{
iMaxSum = Math.max(iMaxSum + num,num);
iMax = Math.max(iMaxSum,iMax);
iMinSum = Math.min(iMinSum + num,num);
iMin = Math.min(iMinSum,iMin);
total += num;
}
return iMax > 0 ? Math.max(iMax,total-iMin) : iMax;
// return Math.max(iMax,total-iMin);
}
}
注意return为什么不是Math.max(iMax,total-iMin);
因为如果数组中全部都是负数,那么imax也是负数
此时min = total ,而 total -total = 0
所以不能返回min,而是返回imax