LeetCode-918. 环形子数组的最大和

17 篇文章 0 订阅
8 篇文章 0 订阅

给定一个长度为 n 的环形整数数组 nums ,返回 nums 的非空 子数组 的最大可能和 。
环形数组 意味着数组的末端将会与开头相连呈环状。形式上, nums[i] 的下一个元素是 nums[(i + 1) % n] , nums[i] 的前一个元素是 nums[(i - 1 + n) % n] 。
子数组 最多只能包含固定缓冲区 nums 中的每个元素一次。形式上,对于子数组 nums[i], nums[i + 1], …, nums[j] ,不存在 i <= k1, k2 <= j 其中 k1 % n == k2 % n

示例

示例一

输入:nums = [1,-2,3,-2]
输出:3
解释:从子数组 [3] 得到最大和 3

示例二

输入:nums = [5,-3,5]
输出:10
解释:从子数组 [5,5] 得到最大和 5 + 5 = 10

示例三

输入:nums = [3,-2,2,-3]
输出:3
解释:从子数组 [3][3,-2,2] 都可以得到最大和 3

方法一 利用maxSum和minSum来计算

由题可知,最大连续子数组的位置有两种情况
情况一:在数组内,不成环
情况二:在数组两端成环
对于情况一,可以参考leetcode 53题最大子数组和

下面分析第二种情况
可知数组的总和是一定的,如果存在最大子数组,那么剩余部分的数字总和一定是最小的,我们用反证法来证明:
设数组总和为sum,最大字数和为max,剩余部分和为other,那么就有个

max + other = sum

如果other不是最小连续子数组,那么存在最小连续子数组,其和为min,其中:

min < other

那么其他剩余的部分的和一定大于max:

sum - min > sum - other 

此时max就不是最大连续子数组

在这里插入图片描述

class Solution {
    public int maxSubarraySumCircular(int[] nums) {
        int iMax = Integer.MIN_VALUE;
        int iMin = Integer.MAX_VALUE;
        int iMaxSum = 0;
        int iMinSum = 0;
        int total = 0;
        for(int num : nums)
        {
            iMaxSum = Math.max(iMaxSum + num,num);
            iMax = Math.max(iMaxSum,iMax);
            iMinSum = Math.min(iMinSum + num,num);
            iMin = Math.min(iMinSum,iMin);
            total += num;
        }
        return iMax > 0 ? Math.max(iMax,total-iMin) : iMax;
        // return Math.max(iMax,total-iMin);
    }
}

注意return为什么不是Math.max(iMax,total-iMin);
因为如果数组中全部都是负数,那么imax也是负数
此时min = total ,而 total -total = 0
所以不能返回min,而是返回imax

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值