随着世界新军事变革的不断发展,武器装备作战能力的生成方式也从传统的“威胁驱动”模式革命性地演进为“体系驱动”模式,这也为军事需求对武器装备发展牵引力不足的问题提供了新的解决思路。华望系统科技基于DODAF或者UAF体系结构框架构建完整的作战体系模型,不仅可以深入剖析战争机理、提高决策水平,还可以通过大规模、全域多维复杂战场空间的构建,对作战环境、武器装备、作战流程、指挥决策等关键要素进行高度逼真的模拟和推演。
同时,可信度评估技术和运行支撑技术等方面的不断创新也使得作战体系的设计更加贴近真实,为军事需求生成和军事战略实施提供坚实的技术支撑。
一、作战体系推演仿真
仿真推演主要通过对作战力量的组织、编制编成、战法运用的仿真以及战场态势感知、联合指挥、决策、战术协同等的仿真,为作战研究、分析论证、模拟训练、试验评估等各领域仿真系统的研制集成和运行管理提供解决方案。作战体系推演仿真的核心在于其能够处理系统的复杂性和不确定性,通过模拟不同的策略和决策,为决策者提供有价值的参考信息。

二、推演仿真的主要功能
2.1 作战体系设计
基于DODAF或者UAF体系的结构框架,利用体系建模与分析技术实现对作战体系的分析与建模。根据体系结构描述过程中形成的活动模型、数据模型和规则模型,生成体系结构的可自执行模型,将可执行模型的仿真运行结果与动态模型进行比较,对体系结构的描述进行逻辑和行为的验证。此外,根据需要还可以进行领域元模型的定制以及视图的定制。

2.2 作战想定制作
作战想定制作主要包括对参与推演仿真的各方角色、角色之间的关系以及作战能力等进行设置,从而支持各类作战的行动部署和任务规划。通过对作战事件的流程进行编辑,实现作战过程中不同关键节点的动态触发与转换。
2.3 作战任务编辑
在拟定计划任务时为参战兵力设置作战任务,可设置地面车辆、作战飞机、水面舰艇、潜艇等装备以及机场、港口、指挥中心、防空导弹阵地、雷达等固定设施为作战目标。任务类型包括机动、展开、突击、打击、转移、巡逻、支援、护航、投送等。
2.4 战场场景可视化
以数字孪生战场为基础的仿真推演可视化技术,能够把实体战场中的地形地貌、人员装备、军事设施等静态数据如实地映射到虚拟战场中;把实体战场中的测绘导航、气象水文、海洋环境、电磁环境等战场感知数据映射到虚拟战场中;把实体战场中的物理规律映射为虚拟战场中的数字化交战规则,从而全方位、全维度地充分展示陆、海、空、天、电磁等各类战场环境、参战实体和交战效果等信息,为战场想定、推演导调、评估分析等环节提供能力支撑。

2.5 作战推演控制
对整个推演过程进行管理监控以保证推演的正常进行。作战推演的控制模块包括环境干预、情报通报、行动干预、增加兵力、毁伤裁决等控制命令,从而支持作战推演系统的初始化、推演开始、暂停继续、停止、断点保存、推演速度调整、步长推进以及推演过程记录、推演复盘分析等功能。
2.6 作战态势显控
包括作战编组、威力范围与融合、对空对海对潜攻击范围、对空对海对潜探测范围、声呐浮标、参考点、单元属性、雷达照射目标瞄准、目标电磁辐射、数据链、规划航线、任务区/航线等多种控制的显示功能。

2.7 作战命令控制
用于对作战命令的控制和作战行动的干预,实现人为干预决策和智能自主决策的有机结合。作战命令控制模块主要包括攻击方向选择(自动攻击、手动攻击、纯方位攻击等)、空中作战控制(单机出动、编队出动、出动准备、终止出动、设置作战规则、分配作战任务等)、作战编组控制、船舶停靠控制、武器/传感器/弹药库等系统的毁伤
三、作战体系设计与仿真推演
基于DoDAF/UAF框架开发的作战体系设计,可以针对作战体系中的作战资源、作战任务、作战行动、作战规则等作战体系要素以更准确的图形化元素进行表征,通过轻量化的体系逻辑仿真,在设计过程中验证作战体系模型的完整性与一致性。在基于逼真的虚拟战场环境的体系仿真推演中接入作战体系模型,从而实现体系设计到仿真推演的闭环,在推演过程中验证作战体系模型的合理性与有效性,这将显著提升体系设计的效率和降低设计的成本。

四、推演仿真的工作流程
通过对作战概念进行需求分析,利用体系架构建模软件对体系架构进行设计与描述,以工程的方式保存一整套体系设计图从而构建体系架构的模型。按照仿真推演平台所需的规范进行数据的处理与转化,生成推演平台支持的想定数据文件,其内容主要包括作战范围、作战环境、作战资源、行动命令等。仿真推演平台根据设计方案进行仿真推演并对过程数据进行效能分析,其结果反馈给设计人员开展体系架构设计的优化与迭代。

五、作战体系效能评估
体系效能评估是指通过模拟和分析军事行动中各作战单位、武器系统和战术策略的实际表现,对它们在特定战场环境中的效果和效率进行量化评估,从而为决策者提供作战方案选择、资源配置优化和战术方法改进的科学依据。

5.1 评估方法构建
通过构建指标库和指标体系、评估模型库、方法库和规则库,并结合指标选取、体系构建、评估方案设计和算法选取,为评估过程提供全面、灵活、精确和科学的依据。
5.2 评估任务创建
通过关联数据源、定义评估指标体系、选择评估方法和模型以及与数据采集与处理模块的结合,开展对具体对象的精确评估。
5.3 评估任务执行
通过数据采集与管理、数据自动预处理、仿真评估和结果管理并按照评估方案进行逐层计算,进而生成针对每个对象的综合评估结果。
5.4 评估结果分析
通过数据对比、敏感性分析、相关性及独立性分析、趋势预测等分析方式,对评估结果进行深入的分析,最终完成对作战效能、作战体系整体效果、作战能力、体系网络化仿真效能等多种指标的分析。
5.5 评估结果展示与报告生成
将分析结果以图表、数据和文字形式进行可视化呈现,并自动生成详细的评估报告以便于决策和后续行动。
六、未来智能化体系仿真推演
未来,作战体系仿真推演的发展可能具有以下几个趋势和方向:

6.1 基于认知计算的智能化自主行为建模
以人工智能领域学习方法解决认知域的问题,从被动的处理“行为规则库”的信息到主动通过认知框架学习行为规则,以实现自主的行为建模。
6.2 基于大数据和深度学习的智能化仿真评估
构建面向问题的智能化仿真评估指标体系,集成仿真推演设计因子的自动分析和决策优化的技术。充分结合仿真大数据的先验知识,在深度学习的框架上充分利用数据的时空相关性,提高仿真评估的自动化程度和智能化程度。
6.3 基于LVC架构的分布式服务仿真
采用分布式多Agent系统的设计架构,建立高性能分布式的服务化仿真引擎,在共享数据高效存取服务的基础上,提供时间管理、数据分发、模型调度、负载均衡、实体管理等服务,实现计算数据和计算任务两种方式并行的计算能力以及仿真模型、组件及应用的柔性配置。
6.4 基于云计算的多分支并行仿真
综合应用复杂系统模型技术、高性能计算技术、先进分布仿真技术、虚拟化技术、普适化技术及与应用领域有关的其他专业技术,实现基于云计算的各类资源的按需共享与重用、多用户按需协同互操作、系统动态优化调度与运行,进而支持体系全生命周期的仿真活动。
-END-
*特别鸣谢所有内容创作者为本文所做出的技术分享以及创意贡献
*本文为原创,最终解释权归杭州华望系统科技所有。未经授权,严禁复制或转载。