行业视野|AI4SE:机器学习挖掘在线用户评论中的产品功能需求

导语

随着互联网、人工智能等技术的快速提升,软件产品的市场竞争更为激烈。如何精准把握用户需求、快速迭代从而推出符合用户需求的产品成为获得竞争优势的关键。传统获取需求的方式如问卷调查和用户访谈等,不仅耗时耗力耗成本,还难以避免主观认知上的偏差。电子商务的蓬勃发展让在线用户评论成为一座亟待挖掘的“需求宝库”。通过卷积神经网络、情感分析、模糊推理以及质量功能展开矩阵(QFD),实现对在线用户评论中需求偏好的自动挖掘,从而为产品功能的设计提供一种创新的解决方法。


一、传统获取需求方法的局限性

在产品研发的初期,企业通常依赖问卷调查和用户访谈等方式来获取用户需求,这些方法通过预设问题从而直接询问用户对产品属性、性能、质量和使用场景的期望。然而这些方法存在诸多明显的局限性:收集大量的用户需求耗时费力,尤其当面对海量用户时,数据收集和整理工作将异常繁重;用户的不同偏好会导致对产品功能的理解产生分歧和争议,从而增加需求分析的复杂性;用户对需求的主观性将难以直接用于指导系统设计的开展。因此,如何有效解决上述困难与不足已成为需求分析的关键挑战。

随着互联网使用的普及,在线用户评论成为了用户需求的新来源。在电商平台上,一款畅销产品往往会有成千上万条的评论,这些评论不仅数量庞大而且信息丰富,表达了用户对产品各方面特性的意见和态度。然而,这些以自然语言形式呈现的评论也隐含着用户对需求的偏好,需要进行预处理以获取对不同特性的评价。相较于上述问卷调查和用户访谈等传统方式,对在线评论进行分析更具挑战性,但也会为企业提供更真实、更及时的用户反馈。

本文针对在线评论作为用户需求的来源,提出一种集卷积神经网络(CNN)、情感分析、模糊推理与质量功能展开矩阵(QFD)于一体的系统框架,旨在实现从海量评论中自动提取需求偏好并对用户满意度进行量化,从而完成功能设计优先级的确定。以吹风机作为产品进行实证分析,以验证本文所提出的新解决方法的有效性与工程适用性。

二、产品功能分析解决方案的框架 

图2.1展示了本解决方案所提出的产品功能分析方法的总体流程:

图片
图2.1  用户需求分析的流程图标题

步骤1:用户需求的获取

根据企业所开发产品的领域和类别,选择使用传统方法如问卷调查和客户访谈等直接获取用户需求,或从电子商务平台获取相同产品的用户评论。具体包括:对于使用传统方法获取的用户需求,直接统计及整理每个用户对每项需求属性的评分;对于获取的在线评论,使用人工或计算机算法进行预处理,标注每条评论所涉及的需求属性类型及用户评分。

步骤2:需求满意度分析

综合考虑需求评分和用户评分的分歧,使用模糊推理以确定每项需求的用户满意度。具体包括:根据获取的用户需求的统计,分析用户对产品各方面特性评分的分布均匀度与方差,对该项需求的争议程度进行量化;使用模糊推理的方法,以每类需求的总体评分和争议度作为输入,确定用户对该项需求的满意度。

步骤 3:产品功能特征重要性的确定

基于每项需求被用户提及的频率、用户满意度及QFD中建立的产品功能特征与用户需求之间的关系,对产品设计过程中功能特征的重要性进行排序。

三、基于卷积神经网络和情感分析的需求挖掘

为了有效挖掘在线用户评论中的需求偏好,本解决方案采用卷积神经网络(CNN)和情感分析的方法。TextCNN是一种针对句子分类的简单的网络模型架构,通过微调少量超参数,在情感分析和问题分类等多个应用中表现出色。利用 CNN 进行文本标注的优势在于能够自动获取文本的特征性表达,避免繁琐的特征性的人工处理,在大规模的分类问题上能够快速获得良好的分类结果。本解决方案采用的TextCNN模型的结构如图3.1所示。

图片
图3.1  TextCNN模型结构的示意图

在情感分析方面,本解决方案利用 SentiWordNet 计算每条评论语句中所蕴含的情感倾向。通过标注需求类型、词语情感倾向分析、评论语句情感分数计算以及需求 Aspect-level 情感评分聚合等处理方式,能够精确获取用户对特定需求的情感态度。这不仅提高了对用户评价分析的准确性,也为后续的需求分析奠定了基础。

四、基于模糊推理的用户满意度分析

在获取用户需求的数据后,如何综合考虑用户评分和争议性从而确定用户对不同需求的满意度将成为关键问题。本解决方案引入模糊推理的方法,通过对用户需求的争议性进行量化计算并结合用户评分,推导出用户对各个需求指标的满意度。

争议性计算包括硬争议性(H)和软争议性(S)两个指标。H 描述的是用户评分数据集的差异程度,S 描述的是评分在区间内的分布均匀性。通过归一化计算,可对用户需求的争议度进行量化。在模糊推理的过程中(如图4.1所示),首先将硬争议性和软争议性转换为模糊集合中的语言变量,通过对模糊规则进行定义,从而推导出需求的争议性。其次,将用户需求的平均情感评分和争议性作为输入,通过模糊推理以确定用户对需求的满意度。

图片
图4.1   需求满意度的模糊推理的框架图

五、基于QFD矩阵的功能重要性的评估

在收集和分析用户需求后,如何将它们转化为产品功能的设计将成为企业关注的核心问题。本解决方案利用 QFD 矩阵,将用户需求的重要度转化为产品功能特征的重要性。QFD 矩阵描述了用户需求与功能属性之间的对应关系,通过计算每个功能特征重要性的量化指标,可确定在产品设计中需要重点考虑的功能。图5.1展示了吹风机的QFD矩阵。

图片
图5.1  吹风机的QFD矩阵图

功能特征重要性的计算方法综合考虑了用户需求满意度、提及频率以及 QFD 矩阵中的关联权重,通过加权求和的方式可得出每个功能特征重要性的排序。该解决方案为产品设计提供了明确的指导方向,从而帮助企业能更好地满足用户需求、提高用户的满意度。

六、案例分析

为了验证本解决方案提出方法的可行性,选取吹风机作为研究对象,收集了来自亚马逊美国官网的多个畅销型号吹风机的用户评论。通过人工标注评论语义,训练基于 CNN 的分类器,并进行需求分析和功能重要性评估。

实验结果表明,使用多个型号产品的评论数据进行训练的分类器具有很强的通用性和泛化能力,可用于对同类型其他型号产品的需求评论开展分析,从而有效减少人工标注的成本和时间花费。

在本案例中,通过对 Revlon 快干轻量吹风机的用户评论进行分析,确定用户对不同需求的关注度和满意度,并基于 QFD 矩阵计算各功能特征的重要性。对该款吹风机各项功能特征重要性的计算结果的排序如图6.1所示。结果表明,“加热前部气流”、“提供可握性”、“允许控制冷/热爆裂”以及“供应前部气流”等功能特征在产品更新换代中具有较高的重要性。

图片
图6.1 基于在线用户评论分析获得的吹风机功能重要性的排序图

小结

本解决方案提出的方法在技术创新和实践应用方面具有重要的意义。

首先,通过卷积神经网络和情感分析,可实现对在线用户评论的自动挖掘和分析,提高了数据处理的效率和精确性。其次,引入模糊推理方法并综合考虑用户评分和争议性,能更为准确地评估用户的满意度。此外,利用 QFD 矩阵将用户需求转化为产品功能设计的关注点,为企业的产品开发提供明确的指导方向。该解决方案不仅适用于吹风机的设计,还可以推广到其他家电产品乃至更广泛的产品领域。通过在线用户评论的自动挖掘和分析,企业能够更及时、更准确地把握用户需求,从而优化产品设计、提高市场竞争力。

尽管本解决方案提出的方法在需求分析和功能评估方面取得了显著的效果,但仍有一些问题值得进一步的研究。例如,在处理多种语言的用户评论时,如何提高分类器的适应性和准确性;在模糊推理的过程中,如何进一步优化模糊规则从而提高满意度评价的精度;在QFD矩阵的应用中,如何能更好地结合不同产品的特点以完善需求与功能之间的对应关系。

未来,随着人工智能技术的进一步发展,探索更先进的自然语言处理技术和机器学习算法,可以进一步提升对在线用户评论的分析能力。同时,结合大数据分析和用户行为的研究,能深入挖掘用户需求的潜在模式,从而为企业的产品创新提供更有力的支持与服务。

END


*本文为原创,最终解释权归杭州华望系统科技所有。未经授权,严禁复制或转载。

*关注【杭州华望MBSE】将推送更多精彩有趣的文章,期待与你同行!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值