B站小土堆Pytorch视频学习-torchvision中的数据集使用(2023.06.14)

一、去Pytorch官网查看torchvision库中有什么方法?

建议将左上角版本切换成0.9.0
在这里插入图片描述

二、拿CIFAR10做例子

(1)建立一个数据集和测试集

#ctrl+点击模版名看用法,root是下载的地址,train表示是训练集还是测试集,download表示是否下载官网提供的数据集,还有两个参数是类型转换
train_set=torchvision.datasets.CIFAR10(root="./dataset",train=True,download=True)
test_set=torchvision.datasets.CIFAR10(root="./dataset",train=False,download=True)

(2)如何通过tensorboard展示出来

import torchvision
from torch.utils.tensorboard import SummaryWriter

#构造进行tensor类型转换的对象
dataset_transform=torchvision.transforms.Compose([torchvision.transforms.ToTensor()])
#ctrl+点击模版名看用法,root是下载的地址,train表示是训练集还是测试集,download表示是否下载官网提供的数据集,transform转换类型的对象
train_set=torchvision.datasets.CIFAR10(root="./dataset",train=True,transform=dataset_transform,download=True)
test_set=torchvision.datasets.CIFAR10(root="./dataset",train=False,transform=dataset_transform,download=True)
#获得数据集的第一张图片和对应的标签
img,target=test_set[0]
#获得数据集的第二张图片和对应的标签
img1,target2=test_set[1]
#通过标签来获得类型名称
print(test_set.classes[target2])
writer=SummaryWriter("p10")
for i in range(10):
    img,target=test_set[i]
    writer.add_image("test_set",img,i)
writer.close()

(3)结果展示
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值