一、去Pytorch官网查看torchvision库中有什么方法?
建议将左上角版本切换成0.9.0
二、拿CIFAR10做例子
(1)建立一个数据集和测试集
#ctrl+点击模版名看用法,root是下载的地址,train表示是训练集还是测试集,download表示是否下载官网提供的数据集,还有两个参数是类型转换
train_set=torchvision.datasets.CIFAR10(root="./dataset",train=True,download=True)
test_set=torchvision.datasets.CIFAR10(root="./dataset",train=False,download=True)
(2)如何通过tensorboard展示出来
import torchvision
from torch.utils.tensorboard import SummaryWriter
#构造进行tensor类型转换的对象
dataset_transform=torchvision.transforms.Compose([torchvision.transforms.ToTensor()])
#ctrl+点击模版名看用法,root是下载的地址,train表示是训练集还是测试集,download表示是否下载官网提供的数据集,transform转换类型的对象
train_set=torchvision.datasets.CIFAR10(root="./dataset",train=True,transform=dataset_transform,download=True)
test_set=torchvision.datasets.CIFAR10(root="./dataset",train=False,transform=dataset_transform,download=True)
#获得数据集的第一张图片和对应的标签
img,target=test_set[0]
#获得数据集的第二张图片和对应的标签
img1,target2=test_set[1]
#通过标签来获得类型名称
print(test_set.classes[target2])
writer=SummaryWriter("p10")
for i in range(10):
img,target=test_set[i]
writer.add_image("test_set",img,i)
writer.close()
(3)结果展示