B站小土堆Pytorch视频学习——模型验证(2023.06.16)

import torchvision
from PIL import  Image
from torch import  nn
import torch
from torch import  nn
#搭建神经网络
class Tudui(nn.Module):
    def __init__(self):
        super().__init__()
        self.seq1=nn.Sequential(
                nn.Conv2d(in_channels=3,out_channels=32,kernel_size=5,stride=1,padding=2),
                nn.MaxPool2d(kernel_size=2),
                nn.Conv2d(in_channels=32,out_channels=32,kernel_size=5,stride=1,padding=2),
                nn.MaxPool2d(kernel_size=2),
                nn.Conv2d(in_channels=32,out_channels=64,kernel_size=5,stride=1,padding=2),
                nn.MaxPool2d(2),
                nn.Flatten(),
                nn.Linear(64*4*4,64),
                nn.Linear(64,10)
        )
    def forward(self,x):
        x=self.seq1(x)
        return x
device=torch.device("cuda")
model=torch.load("tudui_0.pth")
print(model)
img_path="./dog.jpg"
img_dog=Image.open(img_path)
img_dog=img_dog.convert("RGB")
transform=torchvision.transforms.Compose([torchvision.transforms.Resize((32,32)),
                                         torchvision.transforms.ToTensor()])
img_dog=transform(img_dog)
img_dog=torch.reshape(img_dog,(1,3,32,32))
img_dog=img_dog.to(device)
model.eval()
with torch.no_grad():
    output=model(img_dog)
print(output)
print(output.argmax(1))

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值