极限算术运算命题的构造性证明
设 函 数 { f : E → R g : E → R 具 有 公 共 定 义 域 设函数 \begin{cases} f:E\to\R\\ g:E\to\R\\ \end{cases} 具有公共定义域 设函数{f:E→Rg:E→R具有公共定义域
若 { lim E ∋ x → x 0 f ( x ) = A lim E ∋ x → x 0 f ( x ) = B 若\begin{cases} \lim \limits_{E \ni x \to x_0} f(x) = A\\ \lim \limits_{E \ni x \to x_0} f(x) = B \end{cases} 若⎩⎨⎧E∋x→x0limf(x)=AE∋x→x0limf(x)=B
则 { a. lim E ∋ x → x 0 ( f + g ) ( x ) = A + B b. lim E ∋ x → x 0 ( f ⋅ g ) ( x ) = A B c. lim E ∋ x → x 0 1 g ( x ) = 1 B ( B g ( x ) ≠ 0 ) d. lim E ∋ x → x 0 f ( x ) g ( x ) = A B ( B g ( x ) ≠ 0 ) 则\begin{cases} \text{a.} \lim \limits_{E \ni x \to x_0} (f+g)(x) = A+B\\ \text{b.} \lim \limits_{E \ni x \to x_0} (f \cdot g)(x) = A B\\ \text{c.} \lim \limits_{E \ni x \to x_0} \frac{1}{g(x)} = \frac{1}{B}(Bg(x)\neq0)\\ \text{d.} \lim \limits_{E \ni x \to x_0} \frac{f(x)}{g(x)} = \frac{A}{B}(Bg(x)\neq0) \end{cases} 则⎩⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎧a.E∋x→x0lim(f+g)(x)=A+Bb.E∋x→x0lim(f⋅g)(x)=ABc.E∋x→x0limg(x)1=B1(Bg(x)=0)d.E∋x→x0limg(x)f(x)=BA(Bg(x)=0)
\text{ }
◀ \blacktriangleleft ◀
\text{ }
记 { π ( f ) = f ( x ) − A π ( g ) = g ( x ) − B Δ ( f ) = ∣ f ( x ) − A ∣ Δ ( g ) = ∣ g ( x ) − B ∣ 记\begin{cases} \pi(f)=f(x)-A\\ \pi(g)=g(x)-B\\ \Delta(f)= \vert f(x)-A \vert\\ \Delta(g)= \vert g(x)-B \vert\\ \end{cases} 记⎩⎪⎪⎪⎨⎪⎪⎪⎧π(f)=f(x)−Aπ(g)=g(x)−BΔ(f)=∣f(x)−A∣Δ(g)=∣g(x)−B∣
a. \text{a.} a.
∀ ε > 0 { ∃ δ ′ ∀ U ˚ E δ ′ ( x 0 ) Δ ( f ) < ε 2 ∃ δ ′ ′ ∀ U ˚ E δ ′ ′ ( x 0 ) Δ ( g ) < ε 2 ⇒ \forall \varepsilon>0 \begin{cases} \exist \delta' \text{ } \text{ }\forall \mathring{U}_{E}^{\delta'} (x_0) \text{ } \Delta(f)< \frac{\varepsilon}{2}\\ \exist \delta'' \text{ }\forall \mathring{U}_{E}^{\delta''} (x_0) \text{ } \Delta(g)< \frac{\varepsilon}{2}\\ \end{cases}\Rightarrow ∀ε>0{∃δ′ ∀U˚Eδ′(x0) Δ(f)<2ε∃δ′′ ∀U˚Eδ′′(x0) Δ(g)<2ε⇒
∀
ε
>
0
∃
δ
<
min
{
δ
′
,
δ
′
′
}
∀
U
˚
E
δ
(
x
0
)
\forall \varepsilon>0 \text{ } \exist \delta < \min \{ \delta',\delta'' \} \text{ } \text{ }\forall \mathring{U}_{E}^{\delta} (x_0) \text{ }
∀ε>0 ∃δ<min{δ′,δ′′} ∀U˚Eδ(x0)
∣
(
f
+
g
)
(
x
)
−
(
A
+
B
)
∣
\text{ }\text{ }\text{ }\text{ }\vert (f+g)(x) - (A+B) \vert
∣(f+g)(x)−(A+B)∣
=
∣
π
(
f
)
+
π
(
g
)
∣
≤
Δ
(
f
)
+
Δ
(
g
)
<
ε
=\vert \pi(f) + \pi(g) \vert \le \Delta(f) + \Delta(g) < \varepsilon
=∣π(f)+π(g)∣≤Δ(f)+Δ(g)<ε
\text{ }
b. \text{b.} b.
法
一
法一
法一
∀
ε
>
0
{
∃
δ
′
∀
U
˚
E
δ
′
(
x
0
)
Δ
(
f
)
<
min
{
1
,
ε
3
,
ε
3
(
1
+
∣
B
∣
)
}
∃
δ
′
′
∀
U
˚
E
δ
′
′
(
x
0
)
Δ
(
g
)
<
min
{
1
,
ε
3
(
1
+
∣
A
∣
)
}
⇒
\forall \varepsilon>0 \begin{cases} \exist \delta' \text{ } \text{ }\forall \mathring{U}_{E}^{\delta'} (x_0) \text{ } \Delta(f)< \min \{ 1,\frac{\varepsilon}{3},\frac{\varepsilon}{3(1+ \vert B \vert)} \}\\ \exist \delta'' \text{ }\forall \mathring{U}_{E}^{\delta''} (x_0) \text{ } \Delta(g)< \min \{ 1,\frac{\varepsilon}{3(1+ \vert A \vert)} \}\\ \end{cases}\Rightarrow
∀ε>0{∃δ′ ∀U˚Eδ′(x0) Δ(f)<min{1,3ε,3(1+∣B∣)ε}∃δ′′ ∀U˚Eδ′′(x0) Δ(g)<min{1,3(1+∣A∣)ε}⇒
∀ ε > 0 ∃ δ < min { δ ′ , δ ′ ′ } ∀ U ˚ E δ ( x 0 ) \forall \varepsilon>0 \text{ } \exist \delta < \min \{ \delta',\delta'' \} \text{ }\forall \mathring{U}_{E}^{\delta} (x_0) \text{ } ∀ε>0 ∃δ<min{δ′,δ′′} ∀U˚Eδ(x0)
∣
(
f
⋅
g
)
(
x
)
−
A
B
∣
\text{ }\text{ }\text{ }\text{ }\vert (f\cdot g)(x) - AB \vert
∣(f⋅g)(x)−AB∣
=
∣
[
π
(
f
)
+
A
]
[
π
(
g
)
+
B
]
−
A
B
∣
=\vert [\pi(f)+A][\pi(g)+B]-AB \vert
=∣[π(f)+A][π(g)+B]−AB∣
=
∣
π
(
f
)
π
(
g
)
+
π
(
f
)
B
+
π
(
g
)
A
∣
=\vert \pi(f)\pi(g)+\pi(f)B+\pi(g)A \vert
=∣π(f)π(g)+π(f)B+π(g)A∣
≤
Δ
(
f
)
Δ
(
g
)
+
Δ
(
f
)
∣
B
∣
+
Δ
(
g
)
∣
A
∣
\le \Delta(f) \Delta(g) + \Delta(f) \vert B \vert + \Delta(g) \vert A \vert
≤Δ(f)Δ(g)+Δ(f)∣B∣+Δ(g)∣A∣
<
ε
3
⋅
1
+
ε
3
(
1
+
∣
B
∣
)
⋅
∣
B
∣
+
ε
3
(
1
+
∣
A
∣
)
⋅
∣
A
∣
< \frac{\varepsilon}{3} \cdot 1 +\frac{\varepsilon}{3(1+ \vert B \vert)} \cdot \vert B \vert +\frac{\varepsilon}{3(1+ \vert A \vert)} \cdot \vert A \vert
<3ε⋅1+3(1+∣B∣)ε⋅∣B∣+3(1+∣A∣)ε⋅∣A∣
<
ε
3
+
ε
3
+
ε
3
=
ε
< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3}= \varepsilon
<3ε+3ε+3ε=ε
\text{ }
法
二
法二
法二
∀
ε
>
0
{
∃
δ
′
∀
U
˚
E
δ
′
(
x
0
)
Δ
(
f
)
<
min
{
1
,
ε
2
(
1
+
∣
B
∣
)
}
∃
δ
′
′
∀
U
˚
E
δ
′
′
(
x
0
)
Δ
(
g
)
<
min
{
1
,
ε
2
(
1
+
∣
A
∣
)
}
⇒
\forall \varepsilon>0 \begin{cases} \exist \delta' \text{ } \text{ }\forall \mathring{U}_{E}^{\delta'} (x_0) \text{ } \Delta(f)< \min \{ 1,\frac{\varepsilon}{2(1+ \vert B \vert)} \}\\ \exist \delta'' \text{ }\forall \mathring{U}_{E}^{\delta''} (x_0) \text{ } \Delta(g)< \min \{ 1,\frac{\varepsilon}{2(1+ \vert A \vert)} \}\\ \end{cases}\Rightarrow
∀ε>0{∃δ′ ∀U˚Eδ′(x0) Δ(f)<min{1,2(1+∣B∣)ε}∃δ′′ ∀U˚Eδ′′(x0) Δ(g)<min{1,2(1+∣A∣)ε}⇒
∀ ε > 0 ∃ δ < min { δ ′ , δ ′ ′ } ∀ U ˚ E δ ( x 0 ) \forall \varepsilon>0 \text{ } \exist \delta < \min \{ \delta',\delta'' \} \text{ }\forall \mathring{U}_{E}^{\delta} (x_0) ∀ε>0 ∃δ<min{δ′,δ′′} ∀U˚Eδ(x0)
∣ f ( x ) ∣ = ∣ π ( f ) + A ∣ ≤ Δ ( f ) + ∣ A ∣ < 1 + ∣ A ∣ \vert f(x) \vert = \vert \pi(f)+A \vert \le \Delta(f) + \vert A \vert < 1 + \vert A \vert ∣f(x)∣=∣π(f)+A∣≤Δ(f)+∣A∣<1+∣A∣
∣
(
f
⋅
g
)
(
x
)
−
A
B
∣
\text{ }\text{ }\text{ }\text{ }\vert (f\cdot g)(x) - AB \vert
∣(f⋅g)(x)−AB∣
=
∣
(
f
⋅
g
)
(
x
)
−
f
(
x
)
B
+
f
(
x
)
B
−
A
B
∣
=\vert (f\cdot g)(x) -f(x)B +f(x)B - AB \vert
=∣(f⋅g)(x)−f(x)B+f(x)B−AB∣
=
∣
f
(
x
)
π
(
g
)
+
π
(
f
)
B
∣
=\vert f(x)\pi(g)+\pi(f)B \vert
=∣f(x)π(g)+π(f)B∣
≤
∣
f
(
x
)
∣
Δ
(
g
)
+
Δ
(
f
)
∣
B
∣
\le \vert f(x) \vert \Delta(g) + \Delta(f) \vert B \vert
≤∣f(x)∣Δ(g)+Δ(f)∣B∣
<
(
1
+
∣
A
∣
)
⋅
ε
2
(
1
+
∣
A
∣
)
+
ε
2
(
1
+
∣
B
∣
)
⋅
∣
B
∣
< (1+\vert A \vert) \cdot \frac{\varepsilon}{2(1+ \vert A \vert)} + \frac{\varepsilon}{2(1+ \vert B \vert)} \cdot \vert B \vert
<(1+∣A∣)⋅2(1+∣A∣)ε+2(1+∣B∣)ε⋅∣B∣
<
ε
2
+
ε
2
=
ε
< \frac{\varepsilon}{2} + \frac{\varepsilon}{2}= \varepsilon
<2ε+2ε=ε
\text{ }
法
三
法三
法三
∀
ε
>
0
{
∃
δ
′
∀
U
˚
E
δ
′
(
x
0
)
Δ
(
f
)
<
min
{
1
,
ε
3
,
ε
3
(
1
+
∣
B
∣
)
}
∃
δ
′
′
∀
U
˚
E
δ
′
′
(
x
0
)
Δ
(
g
)
<
min
{
1
,
ε
3
(
1
+
∣
A
∣
)
}
⇒
\forall \varepsilon>0 \begin{cases} \exist \delta' \text{ } \text{ }\forall \mathring{U}_{E}^{\delta'} (x_0) \text{ } \Delta(f)< \min \{ 1,\frac{\varepsilon}{3},\frac{\varepsilon}{3(1+ \vert B \vert)} \}\\ \exist \delta'' \text{ }\forall \mathring{U}_{E}^{\delta''} (x_0) \text{ } \Delta(g)< \min \{ 1,\frac{\varepsilon}{3(1+ \vert A \vert)} \}\\ \end{cases}\Rightarrow
∀ε>0{∃δ′ ∀U˚Eδ′(x0) Δ(f)<min{1,3ε,3(1+∣B∣)ε}∃δ′′ ∀U˚Eδ′′(x0) Δ(g)<min{1,3(1+∣A∣)ε}⇒
∀ ε > 0 ∃ δ < min { δ ′ , δ ′ ′ } ∀ U ˚ E δ ( x 0 ) \forall \varepsilon>0 \text{ } \exist \delta < \min \{ \delta',\delta'' \} \text{ }\forall \mathring{U}_{E}^{\delta} (x_0) \text{ } ∀ε>0 ∃δ<min{δ′,δ′′} ∀U˚Eδ(x0)
∣
f
(
x
)
∣
=
∣
π
(
f
)
+
A
∣
≤
Δ
(
f
)
+
∣
A
∣
<
1
+
∣
A
∣
\vert f(x) \vert = \vert \pi(f)+A \vert \le \Delta(f) + \vert A \vert < 1 + \vert A \vert
∣f(x)∣=∣π(f)+A∣≤Δ(f)+∣A∣<1+∣A∣
∣
g
(
x
)
∣
=
∣
π
(
f
)
+
B
∣
≤
Δ
(
g
)
+
∣
B
∣
<
1
+
∣
B
∣
\vert g(x) \vert = \vert \pi(f)+B \vert \le \Delta(g) + \vert B \vert < 1 + \vert B \vert
∣g(x)∣=∣π(f)+B∣≤Δ(g)+∣B∣<1+∣B∣
∣
(
f
⋅
g
)
(
x
)
−
A
B
∣
\text{ }\text{ }\text{ }\text{ }\vert (f\cdot g)(x) - AB \vert
∣(f⋅g)(x)−AB∣
=
∣
(
f
⋅
g
)
(
x
)
−
[
π
(
f
)
−
f
(
x
)
]
[
π
(
g
)
−
g
(
x
)
]
∣
=\vert (f \cdot g)(x)- [\pi(f)-f(x)][\pi(g)-g(x)] \vert
=∣(f⋅g)(x)−[π(f)−f(x)][π(g)−g(x)]∣
=
∣
−
π
(
f
)
π
(
g
)
+
π
(
f
)
g
(
x
)
+
π
(
g
)
f
(
x
)
∣
=\vert -\pi(f)\pi(g)+\pi(f)g(x)+\pi(g)f(x) \vert
=∣−π(f)π(g)+π(f)g(x)+π(g)f(x)∣
≤
Δ
(
f
)
Δ
(
g
)
+
Δ
(
f
)
∣
g
(
x
)
∣
+
Δ
(
g
)
∣
f
(
x
)
∣
\le \Delta(f) \Delta(g) + \Delta(f) \vert g(x) \vert + \Delta(g) \vert f(x) \vert
≤Δ(f)Δ(g)+Δ(f)∣g(x)∣+Δ(g)∣f(x)∣
<
ε
3
⋅
1
+
ε
3
(
1
+
∣
B
∣
)
(
1
+
∣
B
∣
)
+
ε
3
(
1
+
∣
A
∣
)
(
1
+
∣
A
∣
)
< \frac{\varepsilon}{3} \cdot 1 +\frac{\varepsilon}{3(1+ \vert B \vert)}(1+ \vert B \vert) +\frac{\varepsilon}{3(1+ \vert A \vert)} (1+ \vert A \vert)
<3ε⋅1+3(1+∣B∣)ε(1+∣B∣)+3(1+∣A∣)ε(1+∣A∣)
<
ε
3
+
ε
3
+
ε
3
=
ε
< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3}= \varepsilon
<3ε+3ε+3ε=ε
\text{ }
c. \text{c.} c.
∀ ε > 0 ∃ δ ∀ U ˚ E δ ( x 0 ) \forall \varepsilon>0 \text{ } \exist \delta\text{ }\forall \mathring{U}_{E}^{\delta} (x_0) ∀ε>0 ∃δ ∀U˚Eδ(x0)
{ ∣ B ∣ − Δ ( g ) ≥ ∣ g ( x ) ∣ Δ ( g ) < min { ∣ B ∣ 2 , ∣ B ∣ 2 ε 2 } ⇒ \begin{cases} \vert B \vert - \Delta(g) \ge \vert g(x) \vert\\ \Delta(g)< \min \{ \frac{\vert B \vert}{2},\frac{\vert B \vert^2\varepsilon}{2} \} \end{cases} \Rightarrow {∣B∣−Δ(g)≥∣g(x)∣Δ(g)<min{2∣B∣,2∣B∣2ε}⇒
∣ 1 g ( x ) − 1 B ∣ = Δ ( g ) ∣ g ( x ) ∣ ⋅ ∣ B ∣ ≤ Δ ( g ) ∣ ∣ B ∣ − Δ ( g ) ∣ ⋅ ∣ B ∣ < ∣ B ∣ 2 ε 2 ∣ B ∣ 2 ∣ B ∣ = ε \vert \frac{1}{g(x)}- \frac{1}{B} \vert=\frac{\Delta(g)}{\vert g(x) \vert\cdot \vert B \vert} \le \frac{\Delta(g)}{\vert \vert B \vert - \Delta(g) \vert \cdot \vert B \vert}< \frac{\frac{\vert B \vert^2\varepsilon}{2}}{\frac{\vert B \vert}{2}\vert B \vert}= \varepsilon ∣g(x)1−B1∣=∣g(x)∣⋅∣B∣Δ(g)≤∣∣B∣−Δ(g)∣⋅∣B∣Δ(g)<2∣B∣∣B∣2∣B∣2ε=ε
\text{ }
d. \text{d.} d.
\text{ }
▶ \blacktriangleright ▶
\text{ }
几点发现:
一、在以上的每一个证明过程中,都运用了三角不等式. 从此可见三角不等式在一定程度上体现了实数结构的某种本质性特征.
二、注意到以上命题中,用
ε
\varepsilon
ε-
δ
\delta
δ语言表达的已知以及欲证极限的不等式中,都含有近似值算术运算误差估计的结构,每一个部分的证明过程也都紧紧围绕着这些误差估计,描绘出了一根鲜明的主线.
三、下面详细探讨技巧性问题,也即在证明中根据三角不等式以及误差估计的结构进行构造性的取值和证明的方式方法. 核心问题在于已知极限的
ε
\varepsilon
ε-
δ
\delta
δ语言表达中的
ε
\varepsilon
ε的取值,或者说是命名,此命名的作用是为了引出欲证极限的
ε
\varepsilon
ε-
δ
\delta
δ语言表达中的
ε
\varepsilon
ε简洁形式,即单单一个
ε
\varepsilon
ε. 取值,具体表现为对任意常数
c
c
c以及任意正常数
k
k
k与
ε
\varepsilon
ε的积取最小值,此最小值在形式上异于
ε
\varepsilon
ε,但本质上等同于
ε
\varepsilon
ε,因为数
ε
\varepsilon
ε的本质就是一个任意的给定的正实数;取最小值的另一个也是不可忽视的好处是,它可以同时利用不同形式的
ε
\varepsilon
ε以便于运算过程以及结果形式的简洁. 核心问题由关键问题引出,关键问题为如何把由三角不等式推导出的多项式整理汇合成简洁的一个
ε
\varepsilon
ε. 这样,我们就必须关注到多项式的每一项中的元素.利用误差估计这个形式的好处是,我们可以把这些元素分为以下仅有的几类,并且以下几类的元素都十分有助于接下来的推导以及运算,因为它们都是有上界或有下界的.
{
∣
A
∣
Δ
(
f
)
<
ε
∣
f
(
x
)
∣
=
∣
A
+
π
(
f
)
∣
≥
∣
∣
A
∣
−
Δ
(
f
)
∣
>
∣
∣
A
∣
−
ε
∣
∣
f
(
x
)
∣
=
∣
A
+
π
(
f
)
∣
≤
∣
A
∣
+
Δ
(
f
)
<
∣
A
∣
+
ε
\begin{cases} \vert A \vert\\ \Delta(f)<\varepsilon\\ \vert f(x) \vert = \vert A+\pi(f) \vert \ge \vert \vert A \vert - \Delta(f) \vert > \vert \vert A \vert - \varepsilon \vert \\ \vert f(x) \vert = \vert A+\pi(f) \vert \le \text{ } \vert A \vert + \Delta(f) \text{ } < \text{ }\text{ }\vert A \vert + \varepsilon\\ \end{cases}
⎩⎪⎪⎪⎨⎪⎪⎪⎧∣A∣Δ(f)<ε∣f(x)∣=∣A+π(f)∣≥∣∣A∣−Δ(f)∣>∣∣A∣−ε∣∣f(x)∣=∣A+π(f)∣≤ ∣A∣+Δ(f) < ∣A∣+ε
然后,我们具体来看多项式的结构,以及,在多项式的结构中各元素是如何镶嵌其中的.
a.
\text{a.}
a. 两项皆为
Δ
(
f
)
\Delta(f)
Δ(f)的形式,在书写已知极限的
ε
\varepsilon
ε-
δ
\delta
δ语言表达时,选取合适的
ε
\varepsilon
ε前的常数
k
k
k即可. 以上证明中取值方法更一般的形式为,取
{
Δ
(
f
)
<
k
1
ε
Δ
(
g
)
<
k
2
ε
k
1
+
k
2
=
1
\begin{cases} \Delta(f)<k_1 \varepsilon\\ \Delta(g)<k_2 \varepsilon\\ k_1+k_2=1 \end{cases}
⎩⎪⎨⎪⎧Δ(f)<k1εΔ(g)<k2εk1+k2=1.
b.
\text{b.}
b. 在不同的方法中,多项式有不同的项数及具体组合. 但是我们仍能发现,各种变形方法都使得这些多项式的项都有形如
Δ
(
f
)
\Delta(f)
Δ(f)的结构,这保证了每一项都可以放大为一个含因子
ε
\varepsilon
ε的因式,然后利用类似
a.
\text{a.}
a.中的方法将各因式的积调整为简洁的一个
ε
\varepsilon
ε.
c.
\text{c.}
c. 此处为单项式,是分式. 由于分子上已经含有形如
Δ
(
f
)
\Delta(f)
Δ(f)的结构,接下来我们把分母处理为常数则是最为方便的. 按照这种思路,以上证明中取值方法更一般的形式为,取
Δ
(
g
)
<
min
{
c
(
0
<
c
≠
∣
B
∣
)
,
∣
∣
B
∣
−
c
∣
⋅
∣
B
∣
ε
}
\Delta(g)< \min \{ c(0<c\neq \vert B \vert),\vert \vert B \vert - c \vert \cdot \vert B \vert \varepsilon \}
Δ(g)<min{c(0<c=∣B∣),∣∣B∣−c∣⋅∣B∣ε}
d.
\text{d.}
d. 可以由
b.
\text{b.}
b.与
c.
\text{c.}
c.的结论直接推得. 在上述方法中…待更(改集合表示、补充检查)