极限算术运算命题的构造性证明

极限算术运算命题的构造性证明

设 函 数 { f : E → R g : E → R 具 有 公 共 定 义 域 设函数 \begin{cases} f:E\to\R\\ g:E\to\R\\ \end{cases} 具有公共定义域 {f:ERg:ER

若 { lim ⁡ E ∋ x → x 0 f ( x ) = A lim ⁡ E ∋ x → x 0 f ( x ) = B 若\begin{cases} \lim \limits_{E \ni x \to x_0} f(x) = A\\ \lim \limits_{E \ni x \to x_0} f(x) = B \end{cases} Exx0limf(x)=AExx0limf(x)=B

则 { a. lim ⁡ E ∋ x → x 0 ( f + g ) ( x ) = A + B b. lim ⁡ E ∋ x → x 0 ( f ⋅ g ) ( x ) = A B c. lim ⁡ E ∋ x → x 0 1 g ( x ) = 1 B ( B g ( x ) ≠ 0 ) d. lim ⁡ E ∋ x → x 0 f ( x ) g ( x ) = A B ( B g ( x ) ≠ 0 ) 则\begin{cases} \text{a.} \lim \limits_{E \ni x \to x_0} (f+g)(x) = A+B\\ \text{b.} \lim \limits_{E \ni x \to x_0} (f \cdot g)(x) = A B\\ \text{c.} \lim \limits_{E \ni x \to x_0} \frac{1}{g(x)} = \frac{1}{B}(Bg(x)\neq0)\\ \text{d.} \lim \limits_{E \ni x \to x_0} \frac{f(x)}{g(x)} = \frac{A}{B}(Bg(x)\neq0) \end{cases} a.Exx0lim(f+g)(x)=A+Bb.Exx0lim(fg)(x)=ABc.Exx0limg(x)1=B1(Bg(x)=0)d.Exx0limg(x)f(x)=BA(Bg(x)=0)

  \text{ }  

◀ \blacktriangleleft

  \text{ }  

记 { π ( f ) = f ( x ) − A π ( g ) = g ( x ) − B Δ ( f ) = ∣ f ( x ) − A ∣ Δ ( g ) = ∣ g ( x ) − B ∣ 记\begin{cases} \pi(f)=f(x)-A\\ \pi(g)=g(x)-B\\ \Delta(f)= \vert f(x)-A \vert\\ \Delta(g)= \vert g(x)-B \vert\\ \end{cases} π(f)=f(x)Aπ(g)=g(x)BΔ(f)=f(x)AΔ(g)=g(x)B

a. \text{a.} a.

∀ ε > 0 { ∃ δ ′    ∀ U ˚ E δ ′ ( x 0 )   Δ ( f ) < ε 2 ∃ δ ′ ′   ∀ U ˚ E δ ′ ′ ( x 0 )   Δ ( g ) < ε 2 ⇒ \forall \varepsilon>0 \begin{cases} \exist \delta' \text{ } \text{ }\forall \mathring{U}_{E}^{\delta'} (x_0) \text{ } \Delta(f)< \frac{\varepsilon}{2}\\ \exist \delta'' \text{ }\forall \mathring{U}_{E}^{\delta''} (x_0) \text{ } \Delta(g)< \frac{\varepsilon}{2}\\ \end{cases}\Rightarrow ε>0{δ  U˚Eδ(x0) Δ(f)<2εδ U˚Eδ(x0) Δ(g)<2ε

∀ ε > 0   ∃ δ < min ⁡ { δ ′ , δ ′ ′ }    ∀ U ˚ E δ ( x 0 )   \forall \varepsilon>0 \text{ } \exist \delta < \min \{ \delta',\delta'' \} \text{ } \text{ }\forall \mathring{U}_{E}^{\delta} (x_0) \text{ } ε>0 δ<min{δ,δ}  U˚Eδ(x0) 
     ∣ ( f + g ) ( x ) − ( A + B ) ∣ \text{ }\text{ }\text{ }\text{ }\vert (f+g)(x) - (A+B) \vert     (f+g)(x)(A+B)
= ∣ π ( f ) + π ( g ) ∣ ≤ Δ ( f ) + Δ ( g ) < ε =\vert \pi(f) + \pi(g) \vert \le \Delta(f) + \Delta(g) < \varepsilon =π(f)+π(g)Δ(f)+Δ(g)<ε

  \text{ }  

b. \text{b.} b.

法 一 法一
∀ ε > 0 { ∃ δ ′    ∀ U ˚ E δ ′ ( x 0 )   Δ ( f ) < min ⁡ { 1 , ε 3 , ε 3 ( 1 + ∣ B ∣ ) } ∃ δ ′ ′   ∀ U ˚ E δ ′ ′ ( x 0 )   Δ ( g ) < min ⁡ { 1 , ε 3 ( 1 + ∣ A ∣ ) } ⇒ \forall \varepsilon>0 \begin{cases} \exist \delta' \text{ } \text{ }\forall \mathring{U}_{E}^{\delta'} (x_0) \text{ } \Delta(f)< \min \{ 1,\frac{\varepsilon}{3},\frac{\varepsilon}{3(1+ \vert B \vert)} \}\\ \exist \delta'' \text{ }\forall \mathring{U}_{E}^{\delta''} (x_0) \text{ } \Delta(g)< \min \{ 1,\frac{\varepsilon}{3(1+ \vert A \vert)} \}\\ \end{cases}\Rightarrow ε>0{δ  U˚Eδ(x0) Δ(f)<min{1,3ε,3(1+B)ε}δ U˚Eδ(x0) Δ(g)<min{1,3(1+A)ε}

∀ ε > 0   ∃ δ < min ⁡ { δ ′ , δ ′ ′ }   ∀ U ˚ E δ ( x 0 )   \forall \varepsilon>0 \text{ } \exist \delta < \min \{ \delta',\delta'' \} \text{ }\forall \mathring{U}_{E}^{\delta} (x_0) \text{ } ε>0 δ<min{δ,δ} U˚Eδ(x0) 

     ∣ ( f ⋅ g ) ( x ) − A B ∣ \text{ }\text{ }\text{ }\text{ }\vert (f\cdot g)(x) - AB \vert     (fg)(x)AB
= ∣ [ π ( f ) + A ] [ π ( g ) + B ] − A B ∣ =\vert [\pi(f)+A][\pi(g)+B]-AB \vert =[π(f)+A][π(g)+B]AB
= ∣ π ( f ) π ( g ) + π ( f ) B + π ( g ) A ∣ =\vert \pi(f)\pi(g)+\pi(f)B+\pi(g)A \vert =π(f)π(g)+π(f)B+π(g)A
≤ Δ ( f ) Δ ( g ) + Δ ( f ) ∣ B ∣ + Δ ( g ) ∣ A ∣ \le \Delta(f) \Delta(g) + \Delta(f) \vert B \vert + \Delta(g) \vert A \vert Δ(f)Δ(g)+Δ(f)B+Δ(g)A
< ε 3 ⋅ 1 + ε 3 ( 1 + ∣ B ∣ ) ⋅ ∣ B ∣ + ε 3 ( 1 + ∣ A ∣ ) ⋅ ∣ A ∣ < \frac{\varepsilon}{3} \cdot 1 +\frac{\varepsilon}{3(1+ \vert B \vert)} \cdot \vert B \vert +\frac{\varepsilon}{3(1+ \vert A \vert)} \cdot \vert A \vert <3ε1+3(1+B)εB+3(1+A)εA
< ε 3 + ε 3 + ε 3 = ε < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3}= \varepsilon <3ε+3ε+3ε=ε
  \text{ }  

法 二 法二
∀ ε > 0 { ∃ δ ′    ∀ U ˚ E δ ′ ( x 0 )   Δ ( f ) < min ⁡ { 1 , ε 2 ( 1 + ∣ B ∣ ) } ∃ δ ′ ′   ∀ U ˚ E δ ′ ′ ( x 0 )   Δ ( g ) < min ⁡ { 1 , ε 2 ( 1 + ∣ A ∣ ) } ⇒ \forall \varepsilon>0 \begin{cases} \exist \delta' \text{ } \text{ }\forall \mathring{U}_{E}^{\delta'} (x_0) \text{ } \Delta(f)< \min \{ 1,\frac{\varepsilon}{2(1+ \vert B \vert)} \}\\ \exist \delta'' \text{ }\forall \mathring{U}_{E}^{\delta''} (x_0) \text{ } \Delta(g)< \min \{ 1,\frac{\varepsilon}{2(1+ \vert A \vert)} \}\\ \end{cases}\Rightarrow ε>0{δ  U˚Eδ(x0) Δ(f)<min{1,2(1+B)ε}δ U˚Eδ(x0) Δ(g)<min{1,2(1+A)ε}

∀ ε > 0   ∃ δ < min ⁡ { δ ′ , δ ′ ′ }   ∀ U ˚ E δ ( x 0 ) \forall \varepsilon>0 \text{ } \exist \delta < \min \{ \delta',\delta'' \} \text{ }\forall \mathring{U}_{E}^{\delta} (x_0) ε>0 δ<min{δ,δ} U˚Eδ(x0)

∣ f ( x ) ∣ = ∣ π ( f ) + A ∣ ≤ Δ ( f ) + ∣ A ∣ < 1 + ∣ A ∣ \vert f(x) \vert = \vert \pi(f)+A \vert \le \Delta(f) + \vert A \vert < 1 + \vert A \vert f(x)=π(f)+AΔ(f)+A<1+A

     ∣ ( f ⋅ g ) ( x ) − A B ∣ \text{ }\text{ }\text{ }\text{ }\vert (f\cdot g)(x) - AB \vert     (fg)(x)AB
= ∣ ( f ⋅ g ) ( x ) − f ( x ) B + f ( x ) B − A B ∣ =\vert (f\cdot g)(x) -f(x)B +f(x)B - AB \vert =(fg)(x)f(x)B+f(x)BAB
= ∣ f ( x ) π ( g ) + π ( f ) B ∣ =\vert f(x)\pi(g)+\pi(f)B \vert =f(x)π(g)+π(f)B
≤ ∣ f ( x ) ∣ Δ ( g ) + Δ ( f ) ∣ B ∣ \le \vert f(x) \vert \Delta(g) + \Delta(f) \vert B \vert f(x)Δ(g)+Δ(f)B
< ( 1 + ∣ A ∣ ) ⋅ ε 2 ( 1 + ∣ A ∣ ) + ε 2 ( 1 + ∣ B ∣ ) ⋅ ∣ B ∣ < (1+\vert A \vert) \cdot \frac{\varepsilon}{2(1+ \vert A \vert)} + \frac{\varepsilon}{2(1+ \vert B \vert)} \cdot \vert B \vert <(1+A)2(1+A)ε+2(1+B)εB
< ε 2 + ε 2 = ε < \frac{\varepsilon}{2} + \frac{\varepsilon}{2}= \varepsilon <2ε+2ε=ε

  \text{ }  

法 三 法三
∀ ε > 0 { ∃ δ ′    ∀ U ˚ E δ ′ ( x 0 )   Δ ( f ) < min ⁡ { 1 , ε 3 , ε 3 ( 1 + ∣ B ∣ ) } ∃ δ ′ ′   ∀ U ˚ E δ ′ ′ ( x 0 )   Δ ( g ) < min ⁡ { 1 , ε 3 ( 1 + ∣ A ∣ ) } ⇒ \forall \varepsilon>0 \begin{cases} \exist \delta' \text{ } \text{ }\forall \mathring{U}_{E}^{\delta'} (x_0) \text{ } \Delta(f)< \min \{ 1,\frac{\varepsilon}{3},\frac{\varepsilon}{3(1+ \vert B \vert)} \}\\ \exist \delta'' \text{ }\forall \mathring{U}_{E}^{\delta''} (x_0) \text{ } \Delta(g)< \min \{ 1,\frac{\varepsilon}{3(1+ \vert A \vert)} \}\\ \end{cases}\Rightarrow ε>0{δ  U˚Eδ(x0) Δ(f)<min{1,3ε,3(1+B)ε}δ U˚Eδ(x0) Δ(g)<min{1,3(1+A)ε}

∀ ε > 0   ∃ δ < min ⁡ { δ ′ , δ ′ ′ }   ∀ U ˚ E δ ( x 0 )   \forall \varepsilon>0 \text{ } \exist \delta < \min \{ \delta',\delta'' \} \text{ }\forall \mathring{U}_{E}^{\delta} (x_0) \text{ } ε>0 δ<min{δ,δ} U˚Eδ(x0) 

∣ f ( x ) ∣ = ∣ π ( f ) + A ∣ ≤ Δ ( f ) + ∣ A ∣ < 1 + ∣ A ∣ \vert f(x) \vert = \vert \pi(f)+A \vert \le \Delta(f) + \vert A \vert < 1 + \vert A \vert f(x)=π(f)+AΔ(f)+A<1+A
∣ g ( x ) ∣ = ∣ π ( f ) + B ∣ ≤ Δ ( g ) + ∣ B ∣ < 1 + ∣ B ∣ \vert g(x) \vert = \vert \pi(f)+B \vert \le \Delta(g) + \vert B \vert < 1 + \vert B \vert g(x)=π(f)+BΔ(g)+B<1+B

     ∣ ( f ⋅ g ) ( x ) − A B ∣ \text{ }\text{ }\text{ }\text{ }\vert (f\cdot g)(x) - AB \vert     (fg)(x)AB
= ∣ ( f ⋅ g ) ( x ) − [ π ( f ) − f ( x ) ] [ π ( g ) − g ( x ) ] ∣ =\vert (f \cdot g)(x)- [\pi(f)-f(x)][\pi(g)-g(x)] \vert =(fg)(x)[π(f)f(x)][π(g)g(x)]
= ∣ − π ( f ) π ( g ) + π ( f ) g ( x ) + π ( g ) f ( x ) ∣ =\vert -\pi(f)\pi(g)+\pi(f)g(x)+\pi(g)f(x) \vert =π(f)π(g)+π(f)g(x)+π(g)f(x)
≤ Δ ( f ) Δ ( g ) + Δ ( f ) ∣ g ( x ) ∣ + Δ ( g ) ∣ f ( x ) ∣ \le \Delta(f) \Delta(g) + \Delta(f) \vert g(x) \vert + \Delta(g) \vert f(x) \vert Δ(f)Δ(g)+Δ(f)g(x)+Δ(g)f(x)
< ε 3 ⋅ 1 + ε 3 ( 1 + ∣ B ∣ ) ( 1 + ∣ B ∣ ) + ε 3 ( 1 + ∣ A ∣ ) ( 1 + ∣ A ∣ ) < \frac{\varepsilon}{3} \cdot 1 +\frac{\varepsilon}{3(1+ \vert B \vert)}(1+ \vert B \vert) +\frac{\varepsilon}{3(1+ \vert A \vert)} (1+ \vert A \vert) <3ε1+3(1+B)ε(1+B)+3(1+A)ε(1+A)
< ε 3 + ε 3 + ε 3 = ε < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3}= \varepsilon <3ε+3ε+3ε=ε

  \text{ }  

c. \text{c.} c.

∀ ε > 0   ∃ δ   ∀ U ˚ E δ ( x 0 ) \forall \varepsilon>0 \text{ } \exist \delta\text{ }\forall \mathring{U}_{E}^{\delta} (x_0) ε>0 δ U˚Eδ(x0)

{ ∣ B ∣ − Δ ( g ) ≥ ∣ g ( x ) ∣ Δ ( g ) < min ⁡ { ∣ B ∣ 2 , ∣ B ∣ 2 ε 2 } ⇒ \begin{cases} \vert B \vert - \Delta(g) \ge \vert g(x) \vert\\ \Delta(g)< \min \{ \frac{\vert B \vert}{2},\frac{\vert B \vert^2\varepsilon}{2} \} \end{cases} \Rightarrow {BΔ(g)g(x)Δ(g)<min{2B,2B2ε}

∣ 1 g ( x ) − 1 B ∣ = Δ ( g ) ∣ g ( x ) ∣ ⋅ ∣ B ∣ ≤ Δ ( g ) ∣ ∣ B ∣ − Δ ( g ) ∣ ⋅ ∣ B ∣ < ∣ B ∣ 2 ε 2 ∣ B ∣ 2 ∣ B ∣ = ε \vert \frac{1}{g(x)}- \frac{1}{B} \vert=\frac{\Delta(g)}{\vert g(x) \vert\cdot \vert B \vert} \le \frac{\Delta(g)}{\vert \vert B \vert - \Delta(g) \vert \cdot \vert B \vert}< \frac{\frac{\vert B \vert^2\varepsilon}{2}}{\frac{\vert B \vert}{2}\vert B \vert}= \varepsilon g(x)1B1=g(x)BΔ(g)BΔ(g)BΔ(g)<2BB2B2ε=ε

  \text{ }  

d. \text{d.} d.

  \text{ }  

▶ \blacktriangleright

  \text{ }  

几点发现:
一、在以上的每一个证明过程中,都运用了三角不等式. 从此可见三角不等式在一定程度上体现了实数结构的某种本质性特征.
二、注意到以上命题中,用 ε \varepsilon ε- δ \delta δ语言表达的已知以及欲证极限的不等式中,都含有近似值算术运算误差估计的结构,每一个部分的证明过程也都紧紧围绕着这些误差估计,描绘出了一根鲜明的主线.
三、下面详细探讨技巧性问题,也即在证明中根据三角不等式以及误差估计的结构进行构造性的取值和证明的方式方法. 核心问题在于已知极限的 ε \varepsilon ε- δ \delta δ语言表达中的 ε \varepsilon ε的取值,或者说是命名,此命名的作用是为了引出欲证极限的 ε \varepsilon ε- δ \delta δ语言表达中的 ε \varepsilon ε简洁形式,即单单一个 ε \varepsilon ε. 取值,具体表现为对任意常数 c c c以及任意正常数 k k k ε \varepsilon ε的积取最小值,此最小值在形式上异于 ε \varepsilon ε,但本质上等同于 ε \varepsilon ε,因为数 ε \varepsilon ε的本质就是一个任意的给定的正实数;取最小值的另一个也是不可忽视的好处是,它可以同时利用不同形式的 ε \varepsilon ε以便于运算过程以及结果形式的简洁. 核心问题由关键问题引出,关键问题为如何把由三角不等式推导出的多项式整理汇合成简洁的一个 ε \varepsilon ε. 这样,我们就必须关注到多项式的每一项中的元素.利用误差估计这个形式的好处是,我们可以把这些元素分为以下仅有的几类,并且以下几类的元素都十分有助于接下来的推导以及运算,因为它们都是有上界或有下界的. { ∣ A ∣ Δ ( f ) < ε ∣ f ( x ) ∣ = ∣ A + π ( f ) ∣ ≥ ∣ ∣ A ∣ − Δ ( f ) ∣ > ∣ ∣ A ∣ − ε ∣ ∣ f ( x ) ∣ = ∣ A + π ( f ) ∣ ≤   ∣ A ∣ + Δ ( f )   <    ∣ A ∣ + ε \begin{cases} \vert A \vert\\ \Delta(f)<\varepsilon\\ \vert f(x) \vert = \vert A+\pi(f) \vert \ge \vert \vert A \vert - \Delta(f) \vert > \vert \vert A \vert - \varepsilon \vert \\ \vert f(x) \vert = \vert A+\pi(f) \vert \le \text{ } \vert A \vert + \Delta(f) \text{ } < \text{ }\text{ }\vert A \vert + \varepsilon\\ \end{cases} AΔ(f)<εf(x)=A+π(f)AΔ(f)>Aεf(x)=A+π(f) A+Δ(f) <  A+ε

然后,我们具体来看多项式的结构,以及,在多项式的结构中各元素是如何镶嵌其中的.
a. \text{a.} a. 两项皆为 Δ ( f ) \Delta(f) Δ(f)的形式,在书写已知极限的 ε \varepsilon ε- δ \delta δ语言表达时,选取合适的 ε \varepsilon ε前的常数 k k k即可. 以上证明中取值方法更一般的形式为,取 { Δ ( f ) < k 1 ε Δ ( g ) < k 2 ε k 1 + k 2 = 1 \begin{cases} \Delta(f)<k_1 \varepsilon\\ \Delta(g)<k_2 \varepsilon\\ k_1+k_2=1 \end{cases} Δ(f)<k1εΔ(g)<k2εk1+k2=1.
b. \text{b.} b. 在不同的方法中,多项式有不同的项数及具体组合. 但是我们仍能发现,各种变形方法都使得这些多项式的项都有形如 Δ ( f ) \Delta(f) Δ(f)的结构,这保证了每一项都可以放大为一个含因子 ε \varepsilon ε的因式,然后利用类似 a. \text{a.} a.中的方法将各因式的积调整为简洁的一个 ε \varepsilon ε.
c. \text{c.} c. 此处为单项式,是分式. 由于分子上已经含有形如 Δ ( f ) \Delta(f) Δ(f)的结构,接下来我们把分母处理为常数则是最为方便的. 按照这种思路,以上证明中取值方法更一般的形式为,取 Δ ( g ) < min ⁡ { c ( 0 < c ≠ ∣ B ∣ ) , ∣ ∣ B ∣ − c ∣ ⋅ ∣ B ∣ ε } \Delta(g)< \min \{ c(0<c\neq \vert B \vert),\vert \vert B \vert - c \vert \cdot \vert B \vert \varepsilon \} Δ(g)<min{c(0<c=B),BcBε}
d. \text{d.} d. 可以由 b. \text{b.} b. c. \text{c.} c.的结论直接推得. 在上述方法中…待更(改集合表示、补充检查)

已标记关键词 清除标记
相关推荐
【为什么还需要学习C++?】 你是否接触很多语言,但从来没有了解过编程语言的本质? 你是否想成为一名资深开发人员,想开发别人做不了的高性能程序? 你是否经常想要窥探大型企业级开发工程的思路,但苦于没有基础只能望洋兴叹?   那么C++就是你个人能力提升,职业之路进阶的不二之选。 【课程特色】 1.课程共19大章节,239课时内容,涵盖数据结构、函数、类、指针、标准库全部知识体系。 2.带你从知识与思想的层面从0构建C++知识框架,分析大型项目实践思路,为你打下坚实的基础。 3.李宁老师结合4大国外顶级C++著作的精华为大家推出的《征服C++11》课程。 【学完后我将达到什么水平?】 1.对C++的各个知识能够熟练配置、开发、部署; 2.吊打一切关于C++的笔试面试题; 3.面向物联网的“嵌入式”和面向大型化的“分布式”开发,掌握职业钥匙,把握行业先机。 【面向人群】 1.希望一站式快速入门的C++初学者; 2.希望快速学习 C++、掌握编程要义、修炼内功的开发者; 3.有志于挑战更高级的开发项目,成为资深开发的工程师。 【课程设计】 本课程包含3大模块 基础篇 本篇主要讲解c++的基础概念,包含数据类型、运算符等基本语法,数组、指针、字符串等基本词法,循环、函数、类等基本句法等。 进阶篇 本篇主要讲解编程中常用的一些技能,包含类的高级技术、类的继承、编译链接和命名空间等。 提升篇: 本篇可以帮助学员更加高效的进行c++开发,其中包含类型转换、文件操作、异常处理、代码重用等内容。
©️2020 CSDN 皮肤主题: 深蓝海洋 设计师:CSDN官方博客 返回首页