一直比较纠结汉诺塔具体怎么移动的,今天终于鼓足勇气查了一下。。。。
算法介绍:
其实算法非常简单,当盘子的个数为n时,移动的次数应等于2^n – 1(有兴趣的可以自己证明试试看)。后来一位美国学者(那是中国学者不屑于发现。。。)发现一种出人意料的简单方法,只要轮流进行两步操作就可以了。首先把三根柱子按顺序排成品字型,把所有的圆盘按从大到小的顺序放在柱子A上,根据圆盘的数量确定柱子的排放顺序:若n为偶数,按顺时针方向依次摆放 A B C;
若n为奇数,按顺时针方向依次摆放 A C B。
(1)按顺时针方向把圆盘1从现在的柱子移动到下一根柱子,即当n为偶数时,若圆盘1在柱子A,则把它移动到B;若圆盘1在柱子B,则把它移动到C;若圆盘1在柱子C,则把它移动到A。
(2)接着,把另外两根柱子上可以移动的圆盘移动到新的柱子上。即把非空柱子上的圆盘移动到空柱子上,当两根柱子都非空时,移动较小的圆盘。这一步没有明确规定移动哪个圆盘,你可能以为会有多种可能性,其实不然,可实施的行动是唯一的。
(3)反复进行(1)(2)操作,最后就能按规定完成汉诺塔的移动。
所以结果非常简单,就是按照移动规则向一个方向移动金片:
如3阶汉诺塔的移动:A→C,A→B,C→B,A→C,B→A,B→C,A→C
n阶汉诺塔的移动次数为2^n-1;
对于本题目而言采用经典的递归和二分幂
#include <stdio.h>
#define p 1000000
long long f(long long x)
{
long long t;
if(x==1) return 2;
if(x%2==0)//指数为偶数时
{
t=f(x/2)%p;
return t*t%p;
}
if(x%2==1)//指数为奇数时
{
t=f(x/2)%p;
return (t*t%p)*2%p;
}
}
int main()
{
long long n,z,m;
scanf("%lld",&n);
while(n--)
{
scanf("%lld",&m);
z=(f(m)-1)%p;
printf("%lld\n",z);
}
return 0;
}