nyoj 503 解方程 (牛顿迭代)

10 篇文章 0 订阅

主要思想:

首先,选择一个接近函数f(x)零点的x_0,计算相应的f(x_0)和切线斜率f'(x_0)(这里f'表示函数f导数)。然后我们计算穿过点(x_0, f(x_0))并且斜率为f'(x_0)的直线和x轴的交点的x坐标,也就是求如下方程的解:

x\cdot f'(x_0)+f(x_0)-x_0\cdot f'(x_0)=0

我们将新求得的点的x坐标命名为x_1,通常x_1会比x_0更接近方程f(x)=0的解。因此我们现在可以利用x_1开始下一轮迭代。迭代公式可化简为如下所示:

x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}                                                                                                               

已经证明,如果f'连续的,并且待求的零点x是孤立的,那么在零点x周围存在一个区域,只要初始值x_0位于这个邻近区域内,那么牛顿法必定收敛。 并且,如果f'(x)不为0, 那么牛顿法将具有平方收敛的性能. 粗略的说,这意味着每迭代一次,牛顿法结果的有效数字将增加一倍。

 
#include<stdio.h>
#include<stdlib.h>
#include<math.h>
int a,b,c,d,e;
void diedai(double y)
{
	double x=100.0;
while(fabs(a*x*x*x*x-b*x*x*x+c*x*x+d*x+y)>0.000001)
{
	x=x-(a*x*x*x*x-b*x*x*x+c*x*x+d*x+y)/(4*a*x*x*x-3*b*x*x+2*c*x+d);
	
	if(x<0||x>100) break;
}
if(x>=0&&x<=100) printf("%.4lf\n",x);
else printf("No solution!\n");
}
int main()
{
	int n;
	double y;
	a=8;b=7;c=2;d=3;e=6;
	scanf("%d",&n);
	while(n--)
	{
		scanf("%lf",&y);
		diedai(e-y);
	}
	return 0;
}        


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值