定义
- CAP定理是2000年,由 Eric Brewer 提出来的。Brewer认为在分布式的环境下设计和部署系统时,有3个核心的需求,以一种特殊的关系存在。
- 3个核心:Consistency(一致性),Availability(可用性)和Partition Tolerance(分区性)
- CAP定理认为:一个提供数据服务的存储系统无法同时满足数据一致性、数据可用性、分区容忍性
-
一致性
1、一致性,这个和数据库ACID的一致性类似,但这里关注的所有数据节点上的数据一致性和正
确性,而数据库的ACID关注的是在在一个事务内,对数据的一些约束。
2、系统在执行过某项操作后仍然处于一致的状态。在分布式系统中,更新操作执行成功后所有的
用户都应该读取到最新值。
3、分布式环境下,所有的节点在同一个事务结束后都要将数据更新到最新的结果 -
可用性
1、可用性,每一个操作总是能够在一定时间内返回结果。需要注意“一定时间”和“返回结果”。
2、“一定时间”是指系统结果必须在给定时间内返回。
3、“返回结果”是指系统返回操作成功或失败的结果。
4、分布式环境下,整个集群,所有的节点,在指定时间内 能不能返回统一的结果给客户使用 -
分区性
1、分区容忍性,是否可以对数据进行分区。这是考虑到性能和可伸缩性
2、你的数据是否允许分区,允许伸展
推导
- 如果要求对数据进行分区了,就说明了必须节点之间必须进行通信,涉及到通信,就无法确保在有限的时间内完成指定的任务
CP
- 如果要求两个操作之间要完整的进行,因为涉及到通信,肯定存在某一个时刻只完成一部分的业务操作,在通信完成的这一段时间内,数据就是不一致性的。
AP
- 如果要求保证一致性,那么就必须在通信完成这一段时间内保护数据,使得任何访问这些数据的操作不可用。
CA
结论
1、在大型网站应用中,数据规模总是快速扩张的,因此可伸缩性即分区容忍性必不可少,规模变大以后,机器数量也会变得庞,这是网络和服务器故障会频繁出现,要想保证应用可用,就必须保证
分布式处理系统的高可用性。
2、在大型网站中,通常会选择强化分布式存储系统的可用性和伸缩性,在某种程度上放弃一致性
3、 例如秒杀就放弃了一致性 只要保证最后的数据没问题就行 显示什么的 见鬼去吧