给定一个三角形,找出自顶向下的最小路径和。每一步只能移动到下一行中相邻的结点上。
例如,给定三角形:
[
[2],
[3,4],
[6,5,7],
[4,1,8,3] ]
自顶向下的最小路径和为 11(即,2 + 3 + 5 + 1 = 11)。
说明:
如果你可以只使用 O(n) 的额外空间(n 为三角形的总行数)来解决这个问题,那么你的算法会很加分。
至上到下的动态规划
class Solution {
public:
int minimumTotal(vector<vector<int> >& triangle) {
int len = triangle.size();
vector<int> dp(len, 0);
dp[0] = triangle[0][0];
for(int i = 1; i < len; i++)
{
for(int j = i; j >= 0; j--)
{
if(j == i)
{
dp[j] = dp[j - 1] + triangle[i][j];
}
else if(j == 0)
{
dp[j] = dp[j] + triangle[i][j];
}
else
{
dp[j] = min(dp[j], dp[j - 1]) + triangle[i][j];
}
}
}
int MIN = dp[0];
for(int i = 1; i < len; i++)
{
MIN = min(MIN, dp[i]);
}
return MIN;
}
};