给定一个三角形,找出自顶向下的最小路径和。每一步只能移动到下一行中相邻的结点上。
例如,给定三角形:
自顶向下的最小路径和为 11(即,2 + 3 + 5 + 1 = 11)。
提供两种解法,1、逐层从下往上相加,最后返回triangle[0][0],缺点是会改变三角形输入
class Solution {
public:
int minimumTotal(vector<vector<int>>& triangle) {
if(triangle.size() == 0) return 0;
for(int i = triangle.size()-2; i >= 0; i--)
{
for(int j = 0; j < triangle[i].size(); j++)
{
triangle[i][j] += min(triangle[i+1][j], triangle[i+1][j+1]);
}
}
return triangle[0][0];
}
};
2、构造辅助矩阵,同样逐层从下往上相加,缺点是占用额外的空间。
class Solution {
public:
int minimumTotal(vector<vector<int>>& triangle) {
if(triangle.size() == 0) return 0;
vector<vector<int>> dp(triangle.size()+1, vector<int>(triangle.size()+1, 0)); //注意空间大小为原始基础上加1
for(int i = triangle.size()-1; i >= 0; i--)
{
for(int j = 0; j < triangle[i].size(); j++)
{
dp[i][j] = min(dp[i+1][j], dp[i+1][j+1])+triangle[i][j];
}
}
return dp[0][0];
}
};