R语言中dist函数的距离计算

100 篇文章 17 订阅 ¥59.90 ¥99.00
本文详细介绍了R语言中dist函数的使用,包括计算欧氏距离、曼哈顿距离和余弦相似度。通过示例展示了如何应用dist函数处理数据集,获取距离矩阵,并解释了各参数的意义。
摘要由CSDN通过智能技术生成

R语言中dist函数的距离计算

在R语言中,dist函数是一个常用的用于计算距离的函数。它可以用于计算数据集中观测值之间的距离,并将结果以矩阵的形式返回。本文将详细介绍dist函数的使用方法,并提供相应的源代码示例。

dist函数的语法如下:

dist(x, method = "euclidean", diag = FALSE, upper = FALSE, p = 2)

参数说明:

  • x:一个向量、矩阵或数据框,包含要计算距离的观测值。
  • method:距离计算方法,默认为"euclidean"(欧氏距离)。其他常用的方法包括"manhattan"(曼哈顿距离)和"cosine"(余弦相似度)等。
  • diag:逻辑值,表示是否将对角线元素设为0。默认为FALSE。
  • upper:逻辑值,表示是否只返回距离矩阵的上三角部分。默认为FALSE。
  • p:当method="minkowski"时,表示闵可夫斯基距离
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值