使用R语言中的plot函数进行模型诊断图的可视化

83 篇文章 ¥59.90 ¥99.00
本文介绍了如何使用R语言的plot函数创建模型诊断图,包括残差图、QQ图、学生化残差图、杠杆图和Cook's距离图。这些图形有助于评估模型性能,检查数据假设,识别异常值和影响大的数据点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

使用R语言中的plot函数进行模型诊断图的可视化

在机器学习和统计建模中,模型诊断是评估和验证模型的重要步骤之一。通过可视化模型诊断图,我们可以了解模型的性能、检查数据的假设、识别模型中的异常情况等。在R语言中,我们可以使用plot函数来创建各种模型诊断图。

下面将介绍几种常见的模型诊断图,并提供相应的R代码示例。

  1. 残差图(Residual Plot)
    残差图用于检查模型的残差是否满足模型假设。在线性回归模型中,残差是观测值与模型预测值之间的差异。如果残差呈现出某种特定的模式,可能意味着模型存在问题。
# 假设我们有一个线性回归模型
model <- lm(y ~ x, data = mydata)

# 创建残差图
plot(model, which = 1)
  1. QQ图(Quantile-Quantile Plot)
    QQ图用于检查模型的残差是否与正态分布一致。如果残差点在QQ图中大致沿着一条直线分布,则表明残差符合正态分布假设。
# 创建QQ图
plot(model, which = 2)
  1. 学生化残差图(Studentized Residual Plot)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值