使用R语言中的plot函数进行模型诊断图的可视化
在机器学习和统计建模中,模型诊断是评估和验证模型的重要步骤之一。通过可视化模型诊断图,我们可以了解模型的性能、检查数据的假设、识别模型中的异常情况等。在R语言中,我们可以使用plot函数来创建各种模型诊断图。
下面将介绍几种常见的模型诊断图,并提供相应的R代码示例。
- 残差图(Residual Plot)
残差图用于检查模型的残差是否满足模型假设。在线性回归模型中,残差是观测值与模型预测值之间的差异。如果残差呈现出某种特定的模式,可能意味着模型存在问题。
# 假设我们有一个线性回归模型
model <- lm(y ~ x, data = mydata)
# 创建残差图
plot(model, which = 1)
- QQ图(Quantile-Quantile Plot)
QQ图用于检查模型的残差是否与正态分布一致。如果残差点在QQ图中大致沿着一条直线分布,则表明残差符合正态分布假设。
# 创建QQ图
plot(model, which = 2)
- 学生化残差图(Studentized Residual Plot)