Python中文分词实现方法

110 篇文章 12 订阅 ¥59.90 ¥99.00
本文介绍了Python中三种主流的中文分词库——jieba、thulac和pkuseg的使用方法,包括安装、分词示例,帮助开发者选择合适的工具进行中文文本处理。
摘要由CSDN通过智能技术生成

中文分词是自然语言处理中的重要任务之一,它将连续的中文文本切分成有意义的词语。在Python中,有多种方法可以实现中文分词。本文将介绍几种常用的方法,并提供相应的源代码。

  1. jieba分词库:

jieba是Python中最常用的中文分词库之一,它具有成熟的分词算法和丰富的功能。要使用jieba库,首先需要安装它:

pip install jieba

安装完成后,可以使用下面的代码进行中文分词:

import jieba

text = "我爱自然语言处理"
seg_list = jieba.cut(text, cut_all=
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值