【矩阵】蛇形 & 平方

二维矩阵,在游戏开发中,有很多的应用,更多时候,也需要一点向量的知识。本文主要写 蛇形矩阵 的认识和题解,配点简单的 平方矩阵 内容。

蛇形矩阵

输入两个整数 n n n m ( 1 ≤ n , m ≤ 100 ) m(1≤n,m≤100) m1n,m100,输出一个 n n n m m m 列的二维矩阵,将数字 1 1 1 n × m n×m n×m 按照回字蛇形填充至矩阵中。

在这里插入图片描述

输入格式

输入共一行,包含两个整数 n 和 m。

输出格式

输出满足要求的矩阵。

矩阵占 n n n 行,每行包含 m m m 个空格隔开的整数。

输入输出样例

输入样例1

3 3

输出样例1

1 2 3
8 9 4
7 6 5

样例解释:无。

题解 1

思路

  1. 点坐标为 ( x , y ) (x, y) (x,y),开始后,沿着 右→下→左→上 顺时针移动。
  2. 依靠偏移量来实现点的移动:dx[] = {-1, 0, 1, 0}, dy[] = {0, 1, 0, -1}
  3. d 来确定如何偏移和顺时针走圈,d 实现 右→下→左→上 时,取值为 1 → 2 → 3 → 0 1→2→3→0 1230d = (d + 1) % 4
  4. 下一个位置 ( a , b ) (a, b) (a,b) 撞墙或越界时,需要转向:a < 0 || a >= n || b < 0 || b >= m || q[a][b] != 0

点的顺时针走向

#include <iostream>
using namespace std;

const int N = 110;

int n, m;
int q[N][N];    // main 外声明数组,元素赋 0

int main()
{
    cin >> n >> m;
    
    // 记录坐标(下标)的偏移量
    int dx[] = {-1, 0, 1, 0}, dy[] = {0, 1, 0, -1};
    int x = 0, y = 0;  // 左上角开始向右走
    int d = 1;  // 1 右 2 下 3 左 0 上
    for (int i = 1; i <= n*m; i ++) {
        // 左上角 (0, 0) 赋 1
        q[x][y] = i;
        // 开始向右走
        int a = x + dx[d], b = y + dy[d];
        // 判断是否 越界或撞墙,若是,则顺时针转向
        if(a < 0 || a >= n || b < 0 || b >=m || q[a][b] != 0) {
            d = (d + 1) % 4;    // 圈
            a = x + dx[d], b = y + dy[d];   // 转向
        }
        x = a, y= b;
    }
    
    
    for (int i = 0; i < n; i ++ ) {
        for (int j = 0; j < m; j ++ ) {
            cout << q[i][j] << " ";
        }
        cout << endl;
    }
    
    return 0;
}

平方矩阵

输入整数 N ( 0 ≤ N ≤ 100 ) N(0≤N≤100) N0N100,输出一个 N N N 阶的二维数组。

数组的形式参照样例。

输入格式

输入包含多行,每行包含一个整数 N N N

当输入行为 N = 0 N=0 N=0 时,表示输入结束,且该行无需作任何处理。

输出格式

对于每个输入整数 N N N,输出一个满足要求的 N N N 阶二维数组。

每个数组占 N N N 行,每行包含 N N N 个用空格隔开的整数。

每个数组输出完毕后,输出一个空行。

输入输出样例

输入样例1

1
2
3
4
5
0

输出样例

1

1 2
2 1

1 2 3
2 1 2
3 2 1

1 2 3 4
2 1 2 3
3 2 1 2
4 3 2 1

1 2 3 4 5
2 1 2 3 4
3 2 1 2 3
4 3 2 1 2
5 4 3 2 1

题解 1

思路:左上到右下的对角线,对角线上每个点向下、向右延申加 1。

#include <iostream>
#include <cmath>
using namespace std;

const int N = 110;

int n;
int a[N][N];

int main()
{
    while(cin >> n, n) {

        for(int i = 1; i <= n; i++) {
            for(int j = i, k = 1; j <= n; j++, k++) {
                a[i][j] = k;    // i 不变(行不动),随着 j ++,k ++ 向右延伸
                a[j][i] = k;    // i 不变(列不动),随着 j ++,k ++ 向下延伸
            }
        }
		// 输出
        for(int i = 1; i <= n; i++) {
            for(int j = 1; j <= n; j++) {
                cout << a[i][j] << " ";
            }
            cout << endl;
        }
        cout << endl;
    }    

   return 0;
}

题解 2

思路:沿着对角线,将内容分成三个部分,对角线左侧、对角线、对角线右侧

#include <iostream>
#include <cmath>

using namespace std;

const int N = 110;

int n;
int a[N][N];

int main()
{
    while(cin >> n, n) {

        for(int i = 1; i <= n; i++) {
            for(int j = 1, k = i; j <= n; j++) {
                if(j < i) a[i][j] = k --;
                if(j == i) a[i][j] = k = 1;
                if(j > i) a[i][j] = ++ k;
            }
        }

        for(int i = 1; i <= n; i++) {
            for(int j = 1; j <= n; j++) {
                cout << a[i][j] << " ";
            }
            cout << endl;
        }
        cout << endl;
    }    

   return 0;
}

思路:或沿着对角线分成两个部分:[i...1][2...n - i + 1]

#include <iostream>
#include <cmath>

using namespace std;

int main()
{
    int n;
    while(cin >> n, n) {

        for(int i = 1; i <= n; i++) {
            for(int j = i; j >= 1; j--) cout << j << " ";
            for(int j = i + 1; j <= n; j++) cout << j - i + 1 << " ";
            cout << endl;
        }
        cout << endl;
    }    

   return 0;
}

题解 3

思路:每一个位置上的值,都等于行列差的绝对值 + 1: ∣ r o w − c o l ∣ + 1 | row - col | + 1 rowcol+1

#include <iostream>
#include <cmath>

using namespace std;

int main()
{
    int n;
    while(cin >> n, n) {

        for(int i = 1; i <= n; i++) {
            for(int j = 1; j <= n; j++) {
                cout << abs(i - j) + 1 << " ";
            }
            cout << endl;
        }
        cout << endl;
    }    

   return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

老坛算粉

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值