二维矩阵,在游戏开发中,有很多的应用,更多时候,也需要一点向量的知识。本文主要写 蛇形矩阵 的认识和题解,配点简单的 平方矩阵 内容。
蛇形矩阵
输入两个整数 n n n 和 m ( 1 ≤ n , m ≤ 100 ) m(1≤n,m≤100) m(1≤n,m≤100),输出一个 n n n 行 m m m 列的二维矩阵,将数字 1 1 1 到 n × m n×m n×m 按照回字蛇形填充至矩阵中。
输入格式
输入共一行,包含两个整数 n 和 m。
输出格式
输出满足要求的矩阵。
矩阵占 n n n 行,每行包含 m m m 个空格隔开的整数。
输入输出样例
输入样例1
3 3
输出样例1
1 2 3
8 9 4
7 6 5
样例解释:无。
题解 1
思路:
- 点坐标为 ( x , y ) (x, y) (x,y),开始后,沿着 右→下→左→上 顺时针移动。
- 依靠偏移量来实现点的移动:
dx[] = {-1, 0, 1, 0}, dy[] = {0, 1, 0, -1}
- d 来确定如何偏移和顺时针走圈,d 实现 右→下→左→上 时,取值为
1
→
2
→
3
→
0
1→2→3→0
1→2→3→0 :
d = (d + 1) % 4
- 下一个位置
(
a
,
b
)
(a, b)
(a,b) 撞墙或越界时,需要转向:
a < 0 || a >= n
||b < 0 || b >= m
||q[a][b] != 0
#include <iostream>
using namespace std;
const int N = 110;
int n, m;
int q[N][N]; // main 外声明数组,元素赋 0
int main()
{
cin >> n >> m;
// 记录坐标(下标)的偏移量
int dx[] = {-1, 0, 1, 0}, dy[] = {0, 1, 0, -1};
int x = 0, y = 0; // 左上角开始向右走
int d = 1; // 1 右 2 下 3 左 0 上
for (int i = 1; i <= n*m; i ++) {
// 左上角 (0, 0) 赋 1
q[x][y] = i;
// 开始向右走
int a = x + dx[d], b = y + dy[d];
// 判断是否 越界或撞墙,若是,则顺时针转向
if(a < 0 || a >= n || b < 0 || b >=m || q[a][b] != 0) {
d = (d + 1) % 4; // 圈
a = x + dx[d], b = y + dy[d]; // 转向
}
x = a, y= b;
}
for (int i = 0; i < n; i ++ ) {
for (int j = 0; j < m; j ++ ) {
cout << q[i][j] << " ";
}
cout << endl;
}
return 0;
}
平方矩阵
输入整数 N ( 0 ≤ N ≤ 100 ) N(0≤N≤100) N(0≤N≤100),输出一个 N N N 阶的二维数组。
数组的形式参照样例。
输入格式
输入包含多行,每行包含一个整数 N N N。
当输入行为 N = 0 N=0 N=0 时,表示输入结束,且该行无需作任何处理。
输出格式
对于每个输入整数 N N N,输出一个满足要求的 N N N 阶二维数组。
每个数组占 N N N 行,每行包含 N N N 个用空格隔开的整数。
每个数组输出完毕后,输出一个空行。
输入输出样例
输入样例1
1
2
3
4
5
0
输出样例
1
1 2
2 1
1 2 3
2 1 2
3 2 1
1 2 3 4
2 1 2 3
3 2 1 2
4 3 2 1
1 2 3 4 5
2 1 2 3 4
3 2 1 2 3
4 3 2 1 2
5 4 3 2 1
题解 1
思路:左上到右下的对角线,对角线上每个点向下、向右延申加 1。
#include <iostream>
#include <cmath>
using namespace std;
const int N = 110;
int n;
int a[N][N];
int main()
{
while(cin >> n, n) {
for(int i = 1; i <= n; i++) {
for(int j = i, k = 1; j <= n; j++, k++) {
a[i][j] = k; // i 不变(行不动),随着 j ++,k ++ 向右延伸
a[j][i] = k; // i 不变(列不动),随着 j ++,k ++ 向下延伸
}
}
// 输出
for(int i = 1; i <= n; i++) {
for(int j = 1; j <= n; j++) {
cout << a[i][j] << " ";
}
cout << endl;
}
cout << endl;
}
return 0;
}
题解 2
思路:沿着对角线,将内容分成三个部分,对角线左侧、对角线、对角线右侧
#include <iostream>
#include <cmath>
using namespace std;
const int N = 110;
int n;
int a[N][N];
int main()
{
while(cin >> n, n) {
for(int i = 1; i <= n; i++) {
for(int j = 1, k = i; j <= n; j++) {
if(j < i) a[i][j] = k --;
if(j == i) a[i][j] = k = 1;
if(j > i) a[i][j] = ++ k;
}
}
for(int i = 1; i <= n; i++) {
for(int j = 1; j <= n; j++) {
cout << a[i][j] << " ";
}
cout << endl;
}
cout << endl;
}
return 0;
}
思路:或沿着对角线分成两个部分:[i...1]
,[2...n - i + 1]
#include <iostream>
#include <cmath>
using namespace std;
int main()
{
int n;
while(cin >> n, n) {
for(int i = 1; i <= n; i++) {
for(int j = i; j >= 1; j--) cout << j << " ";
for(int j = i + 1; j <= n; j++) cout << j - i + 1 << " ";
cout << endl;
}
cout << endl;
}
return 0;
}
题解 3
思路:每一个位置上的值,都等于行列差的绝对值 + 1: ∣ r o w − c o l ∣ + 1 | row - col | + 1 ∣row−col∣+1。
#include <iostream>
#include <cmath>
using namespace std;
int main()
{
int n;
while(cin >> n, n) {
for(int i = 1; i <= n; i++) {
for(int j = 1; j <= n; j++) {
cout << abs(i - j) + 1 << " ";
}
cout << endl;
}
cout << endl;
}
return 0;
}