题目 2572: 蓝桥杯2020年第十一届省赛真题-子串分值

题目

对于一个字符串S,我们定义S 的分值 f(S) 为S中恰好出现一次的字符个数。例如f (”aba”) = 1,f (”abc”) = 3, f (”aaa”) = 0。
现在给定一个字符串S[0…n-1](长度为n),请你计算对于所有S的非空子串S[i…j](0 ≤ i ≤ j < n), f (S[i… j]) 的和是多少。

输入
输入一行包含一个由小写字母组成的字符串S。

输出
输出一个整数表示答案。
样例输入

ababc

样例输出

21

提示
样例说明:

子串f值:

a     1
ab    2
aba   1
abab  0
ababc 1
 b    1
 ba   2
 bab  1
 babc 2
  a   1
  ab  2
  abc 3
   b  1
   bc 2
    c 1

对于20% 的评测用例,1 ≤ n ≤ 10;
对于40% 的评测用例,1 ≤ n ≤ 100;
对于50% 的评测用例,1 ≤ n ≤ 1000;
对于60% 的评测用例,1 ≤ n ≤ 10000;
对于所有评测用例,1 ≤ n ≤ 100000。

解题思路

本题的题意是,在给定的字符串当中取一个(连续的)子串,该子串当中只出现了一次的字母种类数,即为该子串的值;列举所有不重复的子串,输出它们的值之和。

最直接的方法是遍历,但显然数据量过大,会超时。故又想到了前缀和,只需遍历字符串一次,即可得到第i个下标之前,某个字母出现的次数,下面来寻找前缀和与答案之间的关系。下表是样例的前缀和:

下标0(a)1(b)2(a)3(b)4(c)
a11222
b01122
c00001

答案由两部分组成,一部分是恰好前缀和为1的情况数目,它们是自己本身(单个字母)或者a[0]-a[i](取到头)组成的子串;另一部分是截取一段子串a[i]-a[j](i!=0且i!=j),使得某一字母的前缀和之差恰好为1(这意味着这一段当中该字母仅出现了一次,可以计入子串的数值)。

比如:对于上面的样例,具体而言,字母a对子串和的贡献是1*2+(2-1)*6=8

代码

#include<stdio.h>
#include<string.h>
int acu[26][100001];//统计各个字母累加的个数
int num[26][100001];
int main()
{
	char a[100001];//字符串长度
	scanf("%s",a);
	int i,j,lena = strlen(a);
	long int temp,sum = 0;
	for (i=0;i<lena;i++)
	{
	    acu[a[i]-97][i]++;
	    for (j=0;j<26;j++)
	    {
	        if (i!=0)
        	    acu[j][i]+=acu[j][i-1];
        	num[j][acu[j][i]]++;//累计数目为acu的值的数目加一
	    }
	}
	for (i=1;i<lena;i++)
	{
	    for (j=0;j<26;j++)
	    {
	        temp = num[j][i]*num[j][i-1];
	        sum+=temp;
            if (i==1)
                sum+=num[j][1];
	    }
	}
	printf("%ld",sum);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值