标题:史丰收速算
史丰收速算法的革命性贡献是:从高位算起,预测进位。不需要九九表,彻底颠覆了传统手算!
速算的核心基础是:1位数乘以多位数的乘法。
其中,乘以7是最复杂的,就以它为例。
因为,1/7 是个循环小数:0.142857...,如果多位数超过 142857...,就要进1
同理,2/7, 3/7, ... 6/7 也都是类似的循环小数,多位数超过 n/7,就要进n
下面的程序模拟了史丰收速算法中乘以7的运算过程。
乘以 7 的个位规律是:偶数乘以2,奇数乘以2再加5,都只取个位。
乘以 7 的进位规律是:
满 142857... 进1,
满 285714... 进2,
满 428571... 进3,
满 571428... 进4,
满 714285... 进5,
满 857142... 进6
请分析程序流程,填写划线部分缺少的代码。
int ge_wei(int a)
{
if(a % 2 == 0)
return (a * 2) % 10;
else
return (a * 2 + 5) % 10;
}
//计算进位
int jin_wei(char* p)
{
char* level[] = {
"142857",
"285714",
"428571",
"571428",
"714285",
"857142"
};
char buf[7];
buf[6] = '\0';
strncpy(buf,p,6);
int i;
for(i=5; i>=0; i--){
int r = strcmp(level[i], buf);
if(r<0) return i+1;
while(r==0){
p += 6;
strncpy(buf,p,6);
r = strcmp(level[i], buf);
if(r<0) return i+1;
______________________________; //填空
}
}
return 0;
}
//多位数乘以7
void f(char* s)
{
int head = jin_wei(s);
if(head > 0) printf("%d", head);
char* p = s;
while(*p){
int a = (*p-'0');
int x = (ge_wei(a) + jin_wei(p+1)) % 10;
printf("%d",x);
p++;
}
printf("\n");
}
int main()
{
f("428571428571");
f("34553834937543");
return 0;
}
解题思路:level[]中存储的是循环小数的循环部分,用于比较是否要进位,比较的过程也一部分一部分比,若这一部分相同还不能确定是否要进位,还要继续判断后面部分,直到与循环部分不同,从而比较出大小,决定是否要进位。
填空部分就是比较过程中发现与循环体相同,故而要继续比较后续部分,若大于则进 level[i] 相对应的位数,若小于进leve[i]-1,等于再比后面6位,这里小于的情况直接可以进位,而不用再与level[i-1]比较,是因为该数的前面部分和当前level[i]相同,那么肯定大于level[i-1]。若i==0时,也满足该情况。
#include<cstring>
#include<cstdio>
int ge_wei(int a)
{
if(a % 2 == 0)
return (a * 2) % 10;
else
return (a * 2 + 5) % 10;
}
//计算进位
int jin_wei(char* p)
{
char* level[] = {
"142857",
"285714",
"428571",
"571428",
"714285",
"857142"
};
char buf[7];
buf[6] = '\0';
strncpy(buf,p,6);
int i;
for(i=5; i>=0; i--){
int r = strcmp(level[i], buf);
if(r<0) return i+1;
while(r==0){
p += 6;
strncpy(buf,p,6);
r = strcmp(level[i], buf);
if(r<0) return i+1;
if(r>0) return i; //填空
}
}
return 0;
}
//多位数乘以7
void f(char* s)
{
int head = jin_wei(s);
if(head > 0) printf("%d", head);
char* p = s;
while(*p){
int a = (*p-'0');
int x = (ge_wei(a) + jin_wei(p+1)) % 10;
printf("%d",x);
p++;
}
printf("\n");
}
int main()
{
f("428571428571");
f("34553834937543");
return 0;
}