K-近邻(KNN,K-Nearest Neighbor)算法是一种基本分类与回归方法,在机器学习分类算法中占有相当大的地位,既是最简单的机器学习算法之一,也是基于实例的学习方法中最基本的,又是最好的文本分类算法之一。
我们本篇文章只讨论分类问题的KNN算法。
KNN算法概述
KNN是通过测量不同特征值之间的距离进行分类。
KNN算法思路:如果一个样本在特征空间中的k各最相似(即特征空间中最近邻)的样本中的大多数属于某一个类别,则该样本也属于该类别。其中k一个是不大于20的整数。KNN算法中,所选择的邻居都是已经正确分类的对象。
KNN算法的输入为实例的特征向量,对应于特征空间的点;输出为实例的类别,可以取多类。
KNN算法实际上利用训练数据集对特征向量空间进行划分,并作为其分类的模型。k值的选择、距离度量和分类决策规则是KNN算法的三个基本要素。
KNN算法工作原理
KNN算法工作原理可描述为:
-
假设有一个带有标签的训练样本集,其中包含每条数据与所属分类的对应关系。
-
输入没有带标签的新数据后,计算新数据与训练样本集中每条数据的距离。
-
对求得的所有距离进行升序排序。
-
选取k个与新数据距离最小的训练数据。
-
确定k个训练数据所在类别出现的频率。
-
返回k个训练数据中出现频率最高的类别作为新数据的分类。
KNN算法距离计算方式
在KNN中,通过计算对象间距离来作为各个对象之间的相似性指标,这里的距离计算一般采用欧式距离或者是曼哈顿距离,两种距离的计算公式如下图所示:
KNN算法特点:
优点:精度高、对异常值不敏感、无数据输入假定
缺点:计算复杂度高、空间复杂度高
适用数据范围:数值型和标称型
KNN算法demo实例
python(python3.6)实现一个KNN算法的简单demo
# -*- coding: utf-8 -*-
import numpy as np
from collections import Counter
import os
# 创建样本数据集
def createDataSet():
group = np.array([[1.0, 1.1], [1.0, 1.0], [0, 0.1], [0.1, 0]])
labels = ['A', 'A', 'B', 'B']
return group, labels
# 近邻算法
def classify0 (inX, dataSet, labels, k):
diffMat = np.tile(inX,(dataSet.shape[0],1)) - dataSet #待分类的输入向量与每个训练数据做差
distance = ((diffMat ** 2).sum(axis=1)) ** 0.5 #欧氏距离
sortDistanceIndices = distance.argsort() #从小到大的顺序,返回对应索引值
votelabel = []
for i in range(k):
votelabel.append(labels[sortDistanceIndices[i]])
Xlabel = Counter(votelabel).most_common(1)
return Xlabel[0][0]
if __name__ == "__main__":
# # 创建数据集和 k-近邻算法
group, labels = createDataSet()
# 新数据为[0, 0], k=3
label = classify0([0, 0], group, labels, 3)
print(label)
执行上面代码,在控制台打印输出 B,即为数据[0, 0]的分类。
方法说明
上面python代码中有几个方法在这里简单说明一下:
Counter(votelabel).most_common(1):求votelabel中出现次数最多的元素
np.tile(A,B):若B为int型:在列方向上将A重复B次 若B为元组(m,n):将A在列方向上重复n次,在行方向上重复m次
sum(axis=1):函数的axis参数,axis=0:按列相加;axis=1:按行的方向相加,即每行数据求和
argsort:将数组的值按从小到大排序后,输出索引值