K-近邻(KNN)算法

K-近邻(KNN,K-Nearest Neighbor)算法是一种基本分类与回归方法,在机器学习分类算法中占有相当大的地位,既是最简单的机器学习算法之一,也是基于实例的学习方法中最基本的,又是最好的文本分类算法之一。

我们本篇文章只讨论分类问题的KNN算法。

KNN算法概述

KNN是通过测量不同特征值之间的距离进行分类。

KNN算法思路:如果一个样本在特征空间中的k各最相似(即特征空间中最近邻)的样本中的大多数属于某一个类别,则该样本也属于该类别。其中k一个是不大于20的整数。KNN算法中,所选择的邻居都是已经正确分类的对象。

KNN算法的输入为实例的特征向量,对应于特征空间的点;输出为实例的类别,可以取多类。

KNN算法实际上利用训练数据集对特征向量空间进行划分,并作为其分类的模型。k值的选择、距离度量和分类决策规则是KNN算法的三个基本要素。

 

KNN算法工作原理

 

   KNN算法工作原理可描述为:

  1. 假设有一个带有标签的训练样本集,其中包含每条数据与所属分类的对应关系。

  2. 输入没有带标签的新数据后,计算新数据与训练样本集中每条数据的距离。

  3. 对求得的所有距离进行升序排序。

  4. 选取k个与新数据距离最小的训练数据。

  5. 确定k个训练数据所在类别出现的频率。

  6. 返回k个训练数据中出现频率最高的类别作为新数据的分类。

 

    KNN算法距离计算方式

在KNN中,通过计算对象间距离来作为各个对象之间的相似性指标,这里的距离计算一般采用欧式距离或者是曼哈顿距离,两种距离的计算公式如下图所示:

KNN算法特点:

优点:精度高、对异常值不敏感、无数据输入假定

缺点:计算复杂度高、空间复杂度高

适用数据范围:数值型和标称型

 

KNN算法demo实例

python(python3.6)实现一个KNN算法的简单demo

# -*- coding: utf-8 -*-
import numpy as np
from collections import Counter
import os

# 创建样本数据集
def createDataSet():
    group = np.array([[1.0, 1.1], [1.0, 1.0], [0, 0.1], [0.1, 0]])
    labels = ['A', 'A', 'B', 'B']
    return group, labels

# 近邻算法
def classify0 (inX, dataSet, labels, k):
    diffMat = np.tile(inX,(dataSet.shape[0],1)) - dataSet #待分类的输入向量与每个训练数据做差
    distance = ((diffMat ** 2).sum(axis=1)) ** 0.5 #欧氏距离
    sortDistanceIndices = distance.argsort() #从小到大的顺序,返回对应索引值
    votelabel = []
    for i in range(k):
        votelabel.append(labels[sortDistanceIndices[i]])
    Xlabel = Counter(votelabel).most_common(1)
    return Xlabel[0][0]

if __name__ == "__main__":
    # # 创建数据集和 k-近邻算法
    group, labels = createDataSet()
    # 新数据为[0, 0], k=3
    label = classify0([0, 0], group, labels, 3)
    print(label)

执行上面代码,在控制台打印输出  B,即为数据[0, 0]的分类。

    方法说明

上面python代码中有几个方法在这里简单说明一下:

Counter(votelabel).most_common(1):求votelabel中出现次数最多的元素

np.tile(A,B):若B为int型:在列方向上将A重复B次 若B为元组(m,n):将A在列方向上重复n次,在行方向上重复m次

sum(axis=1):函数的axis参数,axis=0:按列相加;axis=1:按行的方向相加,即每行数据求和

argsort:将数组的值按从小到大排序后,输出索引值

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值