求两个字符串的不连续的公共字串


无论题目怎么样,始终有一个宗旨,那就是一步一步接近结果,最后你会发现一个最终最优化的解题思路,如果你直接看最优解题思路,会比较突兀,理解起来不是很好,一步一步想,会感觉水到渠成,最后你会发现任何已有的算法都基于一个很朴素的想法。

问题描述

给定两个字符串,求出字符串中最长匹配的公共字符串,而且可以不用相连,比如"abcdef"和"abfce",我们可以找到“abce”是最长的公共字符串

问题分解

其实上述的问题,可以分解成两个子问题

(1)首先,找出相连的公共子字符串,比如"abcdef"和"abfce",结果就是"ab"

(2)其次,再考虑这个问题,即不相连的公共字符串

对第一个子问题的分析

 一拿到这个问题,最暴力的方法就是穷举,再一一比较字符串。

再想想,我们就可以发现字符串的比较,其实就是比较字符。为了避免重复的比较,我们用一个二维数组记录之前的比较结果。

下面以"abfcd", "abcdef"为例,加以说明。

[ab, ab]而言,对于的是2,也就是说最长公共字串是2.

[abf, ab]而言,在3*2的矩阵中,最大的数字也是2,那就意味着最长公共长度也是2.

比较字符是否相同,若两字符相同,则对于的数字是斜对角的数字加一。

至于结果的打印,我们可以通过记录下最大的长度,再找出所有最大的长度,就可以打印所有的结果了。

这样就把穷举简化成时间复杂度为o(n*m)的问题,其实这就是动态规划,其本质就是用空间记录之前的比较结果,以此来达到优化时间复杂度的目的。

该算法空间负责度为o(n*m),我们还可以进行再一步优化为o(n)的时间复杂度,其思路跟背包问题相似,至于是逆序,顺序都可以,但是为了打印所有结果的话,必须得用逆序实现。

//find the successive common substring
#include <stdio.h>
#include <iostream>
using namespace std;
#define N 100
int a[N + 5][N + 5];
char s1[N + 5] = "abfcd";
char s2[N + 5] = "abcdef";
void main()
{
    int i, j, k, len1, len2, max, count;
    //---------------o(n * n)
    max = 0;
    for (i = 0; s1[i] != '\0'; i++)
    {
        for (j = 0; s2[j] != '\0'; j++)
        {
            if (s1[i] == s2[j])
            {
                a[i + 1][j + 1] = a[i][j] + 1;
                if (max < a[i + 1][j + 1])
                    max = a[i + 1][j + 1];
            }
            else
            {
                a[i + 1][j + 1] = 0;
            }
        }
    }
    //--------for check
    /**/
    for (i = 0; s1[i] != '\0'; i++)
    {
        for (j = 0; s2[j] != '\0'; j++)
        {
            printf("%d ", a[i + 1][j + 1]);
        }
        puts("");
    }
    
    //----------print the result
    count = 0;
    for (i = 0; s1[i] != '\0'; i++)
    {
        for (j = 0; s2[j] != '\0'; j++)
        {
            if (a[i + 1][j + 1] == max)
            {
                for (k = i - max + 1; k <= i; k++)
                    printf("%c", s1[k]);
                count++;
                puts("");
            }
            
        }
    }
    printf("total : %d\n", count);
    system("pause");
}


 对第二个子问题的分析

了解了第一问的解题思路,稍加修改,就可以解决第二问的问题。

我们第一问是若相同则斜对角加一,若不同,则置为0,这里是若相同,则斜对角加一,若不同则取反斜对角中较大的数。

我们可以这么理解,f(n, m)表示的是长度为n和长度为m的字符串的公共字串的长度,则if str1[n] == str2[m], f(n, m) = f(n - 1, m - 1) + 1; if str1[n] != str2[m], f(n, m) = max(f(n - 1, m), f(n, m - 1))

好了,那接下来的问题就是如何打印的问题,仅仅是以上的数字,我们发现要想打印还得花一些功夫。所以,我们在上面的运算过程中,还记录了另一个数据,就是方向,就是说当前这个值时从斜对角来的,dir就是1;若是从左边来的,dir就是2;若是从上面来的,dir就是3。有了这个之后,打印就轻而易举了。

 

#include <stdio.h>
#include <iostream>
using namespace std;
#define N 100
struct
{
    int len;
    int dir;
}a[N + 5][N + 5];
char s1[N + 5] = "cdbef";
char s2[N + 5] = "abcdef";
char res[N + 5];
void main()
{
    int i, j, k, len1, len2, count;    
    //---------------o(n * n)
    for (i = 0; s1[i] != '\0'; i++)
    {
        for (j = 0; s2[j] != '\0'; j++)
        {
            if (s1[i] == s2[j])
            {
                a[i + 1][j + 1].len = a[i][j].len + 1;
                a[i + 1][j + 1].dir = 1;
            }
            else
            {
                if (a[i][j + 1].len > a[i + 1][j].len)
                {
                    a[i + 1][j + 1].len = a[i][j + 1].len;
                    a[i + 1][j + 1].dir = 3;
                }
                else
                {
                    a[i + 1][j + 1].len = a[i + 1][j].len;
                    a[i + 1][j + 1].dir = 2;
                }
            }
        }
    }
    //--------for check
    /**/
    for (i = 0; s1[i] != '\0'; i++)
    {
        for (j = 0; s2[j] != '\0'; j++)
        {
            printf("%d ", a[i + 1][j + 1].len);
        }
        puts("");
    }
    puts("");
    for (i = 0; s1[i] != '\0'; i++)
    {
        for (j = 0; s2[j] != '\0'; j++)
        {
            printf("%d ", a[i + 1][j + 1].dir);
        }
        puts("");
    }
    
    //----------print the result
    len1 = i;
    len2 = j;
    int len = a[len1][len2].len;
    for (k = len - 1; k >= 0;)
    {
        if (a[i][j].dir == 1)
        {
            res[k] = s1[i - 1];
            k--;
            i--;
            j--;
        }
        else if (a[i][j].dir == 2)
        {
            j--;
        }
        else if (a[i][j].dir == 3)
        {
            i--;
        }
    }

    for (k = 0; k < len; k++)
    {
        printf("%c", res[k]);
    }
    puts("");
    system("pause");
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值