无论题目怎么样,始终有一个宗旨,那就是一步一步接近结果,最后你会发现一个最终最优化的解题思路,如果你直接看最优解题思路,会比较突兀,理解起来不是很好,一步一步想,会感觉水到渠成,最后你会发现任何已有的算法都基于一个很朴素的想法。
问题描述
给定两个字符串,求出字符串中最长匹配的公共字符串,而且可以不用相连,比如"abcdef"和"abfce",我们可以找到“abce”是最长的公共字符串
问题分解
其实上述的问题,可以分解成两个子问题
(1)首先,找出相连的公共子字符串,比如"abcdef"和"abfce",结果就是"ab"
(2)其次,再考虑这个问题,即不相连的公共字符串
对第一个子问题的分析
一拿到这个问题,最暴力的方法就是穷举,再一一比较字符串。
再想想,我们就可以发现字符串的比较,其实就是比较字符。为了避免重复的比较,我们用一个二维数组记录之前的比较结果。
下面以"abfcd", "abcdef"为例,加以说明。
[ab, ab]而言,对于的是2,也就是说最长公共字串是2.
[abf, ab]而言,在3*2的矩阵中,最大的数字也是2,那就意味着最长公共长度也是2.
比较字符是否相同,若两字符相同,则对于的数字是斜对角的数字加一。
至于结果的打印,我们可以通过记录下最大的长度,再找出所有最大的长度,就可以打印所有的结果了。
这样就把穷举简化成时间复杂度为o(n*m)的问题,其实这就是动态规划,其本质就是用空间记录之前的比较结果,以此来达到优化时间复杂度的目的。
该算法空间负责度为o(n*m),我们还可以进行再一步优化为o(n)的时间复杂度,其思路跟背包问题相似,至于是逆序,顺序都可以,但是为了打印所有结果的话,必须得用逆序实现。
//find the successive common substring
#include <stdio.h>
#include <iostream>
using namespace std;
#define N 100
int a[N + 5][N + 5];
char s1[N + 5] = "abfcd";
char s2[N + 5] = "abcdef";
void main()
{
int i, j, k, len1, len2, max, count;
//---------------o(n * n)
max = 0;
for (i = 0; s1[i] != '\0'; i++)
{
for (j = 0; s2[j] != '\0'; j++)
{
if (s1[i] == s2[j])
{
a[i + 1][j + 1] = a[i][j] + 1;
if (max < a[i + 1][j + 1])
max = a[i + 1][j + 1];
}
else
{
a[i + 1][j + 1] = 0;
}
}
}
//--------for check
/**/
for (i = 0; s1[i] != '\0'; i++)
{
for (j = 0; s2[j] != '\0'; j++)
{
printf("%d ", a[i + 1][j + 1]);
}
puts("");
}
//----------print the result
count = 0;
for (i = 0; s1[i] != '\0'; i++)
{
for (j = 0; s2[j] != '\0'; j++)
{
if (a[i + 1][j + 1] == max)
{
for (k = i - max + 1; k <= i; k++)
printf("%c", s1[k]);
count++;
puts("");
}
}
}
printf("total : %d\n", count);
system("pause");
}
对第二个子问题的分析
了解了第一问的解题思路,稍加修改,就可以解决第二问的问题。
我们第一问是若相同则斜对角加一,若不同,则置为0,这里是若相同,则斜对角加一,若不同则取反斜对角中较大的数。
我们可以这么理解,f(n, m)表示的是长度为n和长度为m的字符串的公共字串的长度,则if str1[n] == str2[m], f(n, m) = f(n - 1, m - 1) + 1; if str1[n] != str2[m], f(n, m) = max(f(n - 1, m), f(n, m - 1))
好了,那接下来的问题就是如何打印的问题,仅仅是以上的数字,我们发现要想打印还得花一些功夫。所以,我们在上面的运算过程中,还记录了另一个数据,就是方向,就是说当前这个值时从斜对角来的,dir就是1;若是从左边来的,dir就是2;若是从上面来的,dir就是3。有了这个之后,打印就轻而易举了。
#include <stdio.h>
#include <iostream>
using namespace std;
#define N 100
struct
{
int len;
int dir;
}a[N + 5][N + 5];
char s1[N + 5] = "cdbef";
char s2[N + 5] = "abcdef";
char res[N + 5];
void main()
{
int i, j, k, len1, len2, count;
//---------------o(n * n)
for (i = 0; s1[i] != '\0'; i++)
{
for (j = 0; s2[j] != '\0'; j++)
{
if (s1[i] == s2[j])
{
a[i + 1][j + 1].len = a[i][j].len + 1;
a[i + 1][j + 1].dir = 1;
}
else
{
if (a[i][j + 1].len > a[i + 1][j].len)
{
a[i + 1][j + 1].len = a[i][j + 1].len;
a[i + 1][j + 1].dir = 3;
}
else
{
a[i + 1][j + 1].len = a[i + 1][j].len;
a[i + 1][j + 1].dir = 2;
}
}
}
}
//--------for check
/**/
for (i = 0; s1[i] != '\0'; i++)
{
for (j = 0; s2[j] != '\0'; j++)
{
printf("%d ", a[i + 1][j + 1].len);
}
puts("");
}
puts("");
for (i = 0; s1[i] != '\0'; i++)
{
for (j = 0; s2[j] != '\0'; j++)
{
printf("%d ", a[i + 1][j + 1].dir);
}
puts("");
}
//----------print the result
len1 = i;
len2 = j;
int len = a[len1][len2].len;
for (k = len - 1; k >= 0;)
{
if (a[i][j].dir == 1)
{
res[k] = s1[i - 1];
k--;
i--;
j--;
}
else if (a[i][j].dir == 2)
{
j--;
}
else if (a[i][j].dir == 3)
{
i--;
}
}
for (k = 0; k < len; k++)
{
printf("%c", res[k]);
}
puts("");
system("pause");
}