生病的毛毛虫
码龄13年
关注
提问 私信
  • 博客:131,678
    动态:68
    131,746
    总访问量
  • 187
    原创
  • 24,457
    排名
  • 2,299
    粉丝
  • 18
    铁粉
  • 学习成就
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:浙江省
  • 加入CSDN时间: 2011-12-21
博客简介:

0102的博客

博客描述:
专注于数据结构与算法,java基础,应用开发相关中间件Redis,zk等,微服务相关文章正在计划中。
查看详细资料
  • 原力等级
    成就
    当前等级
    4
    当前总分
    886
    当月
    9
个人成就
  • 获得351次点赞
  • 内容获得249次评论
  • 获得470次收藏
  • 代码片获得211次分享
创作历程
  • 15篇
    2024年
  • 30篇
    2023年
  • 14篇
    2022年
  • 65篇
    2021年
  • 50篇
    2020年
  • 16篇
    2019年
成就勋章
TA的专栏
  • Java基础
    32篇
  • elasticSearch
    3篇
  • 分布式
    31篇
  • Sentinel
    2篇
  • Nacos
    2篇
  • MQ
    1篇
  • IM
    1篇
  • 调优
    5篇
  • gateway
    1篇
  • seata
    1篇
  • CDN
    1篇
  • DNS
    1篇
  • ddd
  • jvm监控工具
    4篇
  • 算法
    59篇
  • 数据结构
    59篇
  • 数码
    1篇
  • 其他
    5篇
  • git
    1篇
  • Arthas
    2篇
  • BTrace
    2篇
  • arths
  • python
    2篇
  • mongodb
    1篇
  • vue.js
    3篇
  • Docker
    5篇
  • 设计模式
  • mysql
    8篇
  • Spring
    6篇
  • Spring cloud
    15篇
  • redis
    16篇
  • rxjava2.0
    1篇
  • 金融小知识
    2篇
  • 计算机网络
    6篇
  • HashMap
    1篇
兴趣领域 设置
  • Python
    python
  • 数据结构与算法
    算法
创作活动更多

HarmonyOS开发者社区有奖征文来啦!

用文字记录下您与HarmonyOS的故事。参与活动,还有机会赢奖,快来加入我们吧!

0人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

Apache Flink内存模型

如上图,Flink总内存(Total Process Memory)包含了Flink总内存(Total Flink Memory) 和JVM特定内存,Flink总内存又包括JVM堆内存(JVM Heap),托管内存(Managed Momory),直接内存(Direct Memory),下面我们分别介绍每一部分的功能以及Flink提供的参数配置。
原创
发布博客 2024.08.25 ·
958 阅读 ·
23 点赞 ·
0 评论 ·
8 收藏

Apache Flink细粒度资源管理原理

如上案例,Flink处理流转关系图中有两个128并发的Kafka Source和一个32并发的Redis ,上下两路数据处理路径,一条是两个Kafka Source经过Join以后在经过一些AGG聚合操作,最后将数据Sink到16并发的Kafka中;(主要是内存),比如,Redis需要将数据缓存到内存提高性能,聚合则需要大量的managed memory存储state,对于这两本了只要申请32 和16份资源,对其后需要128份,那么多余的slot中内存资源就浪费了。对于较重的资源消耗的算子,导致。
原创
发布博客 2024.08.18 ·
941 阅读 ·
25 点赞 ·
0 评论 ·
13 收藏

Apache Flink中TaskManager,SubTask,TaskSlot,并行度之间的关系

另外一个方面是在Flink中运行的task对CPU资源的占用不同,有CUP密集型task 操作和CPU非密集型task操作情况,例如在Flink集群中source和map操作只是读数据后转换,对CPU占用短,但是window这种穿口计算聚合操作设计大量数据计算,占用CPU资源长,这就导致运行时候source/map,sink操作非常快,window操作时间长,source/map对应的subtask会等待window对应的subtask执行,同样sink的对应的。Flink中哪些操作可以合并一起?
原创
发布博客 2024.08.11 ·
1048 阅读 ·
11 点赞 ·
0 评论 ·
13 收藏

Apache Flink 任务提交模式

Application 模式与Per-job类似,只是不需要客户端,每个Application提交之后都启动一个JobManager,也就是创建一个集群,这个JobManager只为执行这一个Flink Application而存在,Application中的多个Job都会共用该集群, Application执行结束之后JobManager也就关闭了。缺点:每个作业都在客户端享集群JobManager提交,如果一个时间点大量提交Flink作业会造成客户端占有大量网络带宽,会加重客户端所在节点的资源消耗。
原创
发布博客 2024.07.21 ·
979 阅读 ·
21 点赞 ·
0 评论 ·
19 收藏

Apache Flink 运行时架构

TaskManager会提供JobManager从ResourceManager中申请和分配的Slot计算资源,JobMaster根据分配到的Slot计算资源将Task提交到TaskManager上运行。一个FLink集群中至少有一个TaskManager,在TaskManager中资源调度的最小单位是task slot,一个TaskManager中task Slot的数量决定了当前Taskmanager最高支持的兵法task个数,一个TaskSlot中可以执行多个算子。
原创
发布博客 2024.07.10 ·
913 阅读 ·
24 点赞 ·
0 评论 ·
18 收藏

Apache Flink核心特性&应用场景

Apache Flink是一个分布式处理引擎,用于处理 无边界数据流, 有边界数据流上金秀贤有状态的计算。Flink能在所有常见的集群环境中运行,并能以内存速度和任意规模进行计算如下Flink官网的一张图。
原创
发布博客 2024.07.08 ·
897 阅读 ·
18 点赞 ·
0 评论 ·
11 收藏

Interview preparation--Https 工作流程

Client将B 以及 A加密后的密文集 一起 发送给Service ,Service 用 私钥解密 B 得到A,利用A解密密文的到原文。Client持有公钥,Service 持有私钥,第三步开始Client 生成一个对称密钥A,用公钥加密A得到加密后的字符B。通过SSL证书,完成了公钥的安全获取,安全性由第三方保证。接下来就是走上一个步骤中说明的:对称加密和非对称加密结合使用过程。同样Service用A加密要传输的数据得到密文传输给Client用A解密得原文。总的来说,HTTPS实现如下图。
原创
发布博客 2024.07.02 ·
885 阅读 ·
18 点赞 ·
0 评论 ·
5 收藏

Elasticsearch写入原理与调优

ES的写入优化和其他数据库存储类似,就是避免直接对磁盘进行操作,通过加缓存的方式,如果加一层缓存不行,那么久多加一层缓存,通过backup文件追加写的方式来做crash-safe。第二步:node 4 通过文档id在路由表中的映射信息确定当前数据的位置为分片0,分片0的主分片位于node 5,将数据妆发到node5。Es会定期进行flush ,将缓存中的Segment写入到磁盘,写完后,会讲Segment索引标记为可用,所以写入到查询有1s延迟。第一步:客户端发起请求到node4的1分片。
原创
发布博客 2024.06.25 ·
1336 阅读 ·
11 点赞 ·
0 评论 ·
29 收藏

Interview preparation--Elasticsearch并发控制

每个索引文档都有一个版本号。默认情况下,使用从1 开始的内部版本控制,每次更新都会增加。可选操作是,版本号可以设置为外部(比如在数据库中维护)。提供的值必须大于或等于0 而且小于9.2e + 18 左右的数字长整型值。如果设置了version_type = external,在用外部版本类型时候,系统会检查传递给索引请求的版本号是否大于当前存储文档的版本。如果为真,文档将被索引并使用新的版本号。如果提供的值小于或等于存储文档的版本号,则会发生版本冲突,索引操作将失败。
原创
发布博客 2024.06.25 ·
465 阅读 ·
6 点赞 ·
0 评论 ·
2 收藏

Interview preparation--elasticSearch正排索引原理

倒排索引适用于确认 term 在哪些文档中, 正排索引正好相反适用于确认某个文档中存在哪些term正排索引 和 倒排索引都是在index-time时候 创建,存储位置都是在lucene文件中序列化到磁盘中doc values 使用非jvm heap,对gc友好。
原创
发布博客 2024.06.24 ·
1054 阅读 ·
23 点赞 ·
0 评论 ·
15 收藏

Interview preparation--elasticSearch倒排索引原理

第一点说明:以上查询语句,我们需要在product上建索引, MySql上使用的B+树,因为文本的信息量特别的大,导致所需要的节点就更多N个16KB(第三点说明:“小米 NFC 手机%” 去掉做匹配,走索引的方式,则会只查询"小米 NFC 手机"开头的,这样就会导致结果不准确。B树的每个节点都存放 索引 & 数据,数据遍布整个树结构,搜索可能在非叶子结点结束,最好情况是O(1)第二点说明:“%小米 NFC 手机%” 查询中用做匹配的方式去查询,会导致索引失效,这样导致全表扫描。
原创
发布博客 2024.06.23 ·
724 阅读 ·
18 点赞 ·
0 评论 ·
15 收藏

Interview preparation--elascitSearch深分页问题

【代码】Interview preparation--elascitSearch深分页问题。
原创
发布博客 2024.06.21 ·
439 阅读 ·
5 点赞 ·
0 评论 ·
6 收藏

Interview preparation--案例加密后数据的模糊查询

如果需要检索所有包含检索条件4个字符的数据比如:test,加密字符后通过 key like “%partial%” 查库。
原创
发布博客 2024.06.13 ·
826 阅读 ·
10 点赞 ·
0 评论 ·
8 收藏

Interview preparation--RabbitMQ

RabbitMQ没有直接支持延迟队列,而是通过死信队列实现,在死信队列中,可以为普通交换机绑定多个消息队列,假设绑定过期时间为5分钟,10分钟,30分钟,3个消息队列,然后为每一个对了设置一个DLX,为每一个DLX关联一个死信息队列,这样因为普通队列没有被消费,等指定时间后久会到DLX中,接着DLX中的绑定消费者消费这条消息,间接实现了延迟队列。RabbitMQ支持延迟消息,投递后到exchange之后,并不会立刻给消费者,而是指定时间之后给。
原创
发布博客 2024.06.07 ·
913 阅读 ·
21 点赞 ·
0 评论 ·
21 收藏

Interview preparation-- Feign源码分析

【代码】Interview preparation-- Feign源码分析。
原创
发布博客 2024.06.02 ·
471 阅读 ·
3 点赞 ·
1 评论 ·
7 收藏

Flink架构原理,入门操作

发布资源 2023.05.05 ·
zip

ClickHouse学习入门,快速上手

发布资源 2023.05.05 ·
zip

Interview preparation-- mongodb

如果需要查询时效性,例如insert后立刻查询,选择 primary/primaryPreferred。如果是类似广播发布信息,比如上传图片后,全国各地每个地方都需要读:nearest。如果实效性不高,则可以从:secondary/sendaryPreferred。
原创
发布博客 2023.04.16 ·
233 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

Interview preparation -- 线上问题排查指令

【代码】Interview preparation -- 线上问题排查指令。
原创
发布博客 2023.04.04 ·
188 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Interview preparation-- manager

书籍:-《管理学》:https://book.douban.com/subject/1012611/-《卓有成效的管理者》:https://book.douban.com/subject/25850098/-《人性的弱点》:https://book.douban.com/subject/1391399/课程和培训:Coursera:https://www.coursera.org/edX:https://www.edx.org/领英学习:https://www.linkedin.com/learn
原创
发布博客 2023.04.02 ·
198 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多