题目
一个射线,初始方向向上。一段时间后会分裂,向该方向的左右45度分裂2条射线。宇宙射线会分裂那次,每次会前进ai个单位长度。
输入描述
第一行一个正整数 n (n<=30),表示分裂n次
第二行包含n个正整数a1…an,分别表示在那个方向上会走多少个单位。
样例输入
4
4 2 2 3
样例输出
39
思路
我一开始用bfs写,但是失败了,后来改用dfs。
dfs有8个方向,分别为 上下左右,还有4个斜的方向。
那么就每个方向分裂两个方向,不停递归。
写起来很容易,但是会超时。
所以需要优化,我用了个多维数组记录状态进行优化。
代码实现
#include <iostream>
#include <iomanip>
#include <set>
using namespace std;
int b[50];
int n;
set< pair<int,int> > S;
bool j[400][400][35][9]={0};
void dfs(int x,int y ,int bi,int fx )//bi是b的索引,fx是方向
{
if(bi>n) return;
if(j[x][y][bi][fx]) //优化
return;
j[x][y][bi][fx]=1;
int B = b[bi];
if(fx == 1) //上
{
while(B--)
{
y++;
S.insert( pair<int,int>(x,y) );
}
dfs(x,y,bi+1,5);
dfs(x,y,bi+1,7);
}
if(fx == 2) //下
{
while(B--)
{
y--;
S.insert( pair<int,int>(x,y) );
}
dfs(x,y,bi+1,6);
dfs(x,y,bi+1,8);
}
if(fx == 3)//左
{
while(B--)
{
x--;
S.insert( pair<int,int>(x,y) );
}
dfs(x,y,bi+1,5);
dfs(x,y,bi+1,6);
}
if(fx == 4)//右
{
while(B--)
{
x++;
S.insert( pair<int,int>(x,y) );
}
dfs(x,y,bi+1,7);
dfs(x,y,bi+1,8);
}
if(fx == 5)//左上
{
while(B--)
{
y++;
x--;
S.insert( pair<int,int>(x,y) );
}
dfs(x,y,bi+1,1);
dfs(x,y,bi+1,3);
}
if(fx == 6)//左下
{
while(B--)
{
x--;
y--;
S.insert( pair<int,int>(x,y) );
}
dfs(x,y,bi+1,3);
dfs(x,y,bi+1,2);
}
if(fx == 7)//右上
{
while(B--)
{
x++;
y++;
S.insert( pair<int,int>(x,y) );
}
dfs(x,y,bi+1,1);
dfs(x,y,bi+1,4);
}
if(fx == 8)//右下
{
while(B--)
{
x++;
y--;
S.insert( pair<int,int>(x,y) );
}
dfs(x,y,bi+1,4);
dfs(x,y,bi+1,2);
}
}
int main()
{
cin>>n;
for(int i=0;i<n;i++)
cin>>b[i];
dfs(200,200,0,1);
cout<<S.size();
return 0;
}
收获
利用多维数组记录状态,进行优化以便降低时间复杂度。
利用set,除去重复的点。
我一开想的优化算法是,定义一个3维的结构体,表示状态,然后塞进set里面,再利用set 的某个函数或许可以判断是否来过这个状态,但是居然编译失败,似乎是set自带的排序功能惹的祸,但是我也重载了小于号的,不知道为什么就是编译失败,于是只能选择这种方法。