高维空间几何

1、正负曲率的理解:

http://stanwagon.com/wagon/misc/htmllinks/invisiblehandshake_3.html

A surface has positive curvature at a point if the surface curves away from that point in the same direction relative to the tangent to the surface, regardless of the cutting plane. Alternatively, the surface stays on one side of the tangent plane at that point. Thus the top of your head, the end of your finger, or the inside of your armpit are points of positive curvature. The first image below, a bump, shows positive curvature.

A surface has negative curvature at a point if the surface curves away from the tangent plane in two different directions. The classic example is a saddle, which can be found on your body in the space between your thumb and forefinger, or along the inside of your neck. Any point on the inside of a torus has negative curvature because there are planar cuts that yield curves that bend in opposite directions with respect to the tangent plane at the point. Negative curvature — the saddle shape — arises spontaneously as nature tries to minimize energy; see the soap bubble photo above. Invisible Handshake is a form that has negative curvature at each point. Thus each point can be viewed as the keystone of two arches in different directions, and this feature gives the surface great strength.

 

2、关于曲率,流形,一个很通俗的解释:

作者:Yuhang Liu
链接:https://www.zhihu.com/question/25952605/answer/751706539
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
 

一个圆半径越小,看起来就越弯曲;半径越大,看起来就越平,半径趋于无穷大,圆看起来就像一条直线,就几乎不弯曲了。所以我们把圆的半径的倒数,定义为曲率,因为我们希望曲率是一个衡量几何体弯曲程度的量。

对于一般的曲线,每点局部可以近似看成一小段圆弧(可以看其他答主提到的密切圆)。固定一点后,该点处密切圆弧的半径的倒数,就定义成曲线在该点处的曲率。注意,对于一般的曲线而言,不同点处的曲率数值并不一样,是个变数而不是常数。用数学术语来说,曲率是定义在曲线上的一个函数。——严格来说还可以讨论曲线曲率的正负号,但涉及曲线的定向问题,我不想画图所以不讨论了。

对曲面而言,固定一个点,沿着该点不同切方向截出的曲线的曲率,就是曲面沿着这个方向的法曲率。法曲率中最大的与最小的,称为两个主曲率,对应的方向称为主方向。两个主曲率的乘积,称为曲面在该点处的高斯曲率——对的,就是那个德国数学大师高斯提出来的。高斯曲率不仅有数值的大小,也有自然而然的正负号,因为两个主方向对应的曲线可以弯向相同或者相反的方向。弯向相同的方向,比如球面,椭球面,就是正曲率,局部都位于切平面的同一侧;弯向相反的方向,比如马鞍面,或者薯片,就是负曲率,切平面的两侧都有曲面分布。当然,曲率本身是个函数(变数),他在同一张曲面上也是可以变号的。比如考虑环面(看成3维空间中的旋转曲面,而不是平坦环面),可以想想哪些点是正曲率,哪些点是负曲率。

然后数学上还可以考虑更高维度的几何体,术语称为“流形”。3维以上流形,我们依然可以套用降维化归的想法,在流形上截出一个个子曲面,考虑这些子曲面的高斯曲率,术语称之为“截面曲率”,他们反映了流形沿着这些子曲面的弯曲信息。高维几何体的曲率的表达形式更加复杂,准确地说,流形上的曲率是个“张量”,而不仅仅是个数量——顺便提一句,流形上曲率张量这一整套理论,是另一个德国数学大师黎曼提出来的,所以同学们,不要小瞧德国的数学。不过讲到这里已经差不多到我通俗表达能力的极限了,要准确解释什么是“曲率张量”,然后通过曲率张量定义截面曲率,甚至准确定义什么是流形,我都得写数学定义、写公式了——而知乎上的文科生似乎不喜欢公式。。要准确理解最后一段提到的流形的曲率,您起码得学过数分、高代、微分流形理论、黎曼几何入门;不过理解曲线曲率,其实懂多元微分就行了,积分都不需要,文科生咬咬牙也是能做到的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值