E - 二叉树先序遍历

输入一个整数n(n <= 100000),表示二叉树中结点个数,编号为1~n。约定1号结点为二叉树的根节点。然后输入n行,每行包括两个整数,第i行表示编号为i的结点的左子节点和右子节点的编号。如果某个结点没有左子节点,那么对应输行的第一个整数为0;如果某个结点没有右子节点,那么对应行的第二个整数为0。
先序遍历输出此二叉树每个结点的编号,每行输出一个编号。
先序遍历(DLR),是二叉树遍历的一种,也叫做先根遍历、前序遍历、前序周游,可记做根左右。前序遍历首先访问根结点然后遍历左子树,最后遍历右子树。

Input

第一行:一个整数n 接下来n行,每行有两个整数

Output

输出n行,每行一个整数,表示节点编号。

Sample Input

5
2 5
3 4
0 0
0 0
0 0

Sample Output

1
2
3
4
5

#include"iostream"
#include"string"
#include"algorithm"
using namespace std;
struct p{
	int l,r;
}s[100005];
void dfs(int x)
{
	if(x==0)
	{
		return;
	}
	cout<<x<<endl;
	dfs(s[x].l);
	dfs(s[x].r);
}
int main()
{
	int n;
	cin>>n;
	for(int i=1;i<=n;i++)
	{
		cin>>s[i].l>>s[i].r;
	}
	dfs(1);
	return 0;
}
要将二叉树序遍历转换为后序遍历,我们不能直接通过字符串操作或简单的转换算法来实现,因为序遍历和后序遍历表示的是不同的访问顺序,这两种遍历的结果通常是不相同的。序遍历指的是访问根节点,然后递归地序遍历左子树,接着递归地序遍历右子树。后序遍历则是在访问左子树和右子树之后再访问根节点。 如果你有一个具体的序遍历结果,并希望得到对应的后序遍历结果,你需要提供或构建出具体的二叉树结构。如果已知二叉树序遍历结果和一些其他信息(比如中序遍历结果或者节点的数量),可以通过递归或栈的方式重建二叉树,然后进行后序遍历。 以下是一个简单的例子,使用递归方式重建二叉树并进行后序遍历: ```c #include <stdio.h> #include <stdlib.h> // 定义二叉树节点结构体 typedef struct TreeNode { char data; struct TreeNode *left; struct TreeNode *right; } TreeNode; // 函数声明 TreeNode* buildTree(char* preorder, int* preIndex, int low, int high, int size); void postorderTraversal(TreeNode* root); void printArray(char* array, int size); int main() { char preorder[] = {'A', 'B', 'D', 'E', 'C', 'F'}; // 假设这是已知的序遍历结果 int size = sizeof(preorder) / sizeof(preorder[0]); int preIndex = 0; TreeNode* root = buildTree(preorder, &preIndex, 0, size - 1, size); printf("Postorder Traversal: "); postorderTraversal(root); // 注意:这里没有释放分配的内存,实际使用时应适当释放内存 return 0; } // 递归构建二叉树 TreeNode* buildTree(char* preorder, int* preIndex, int low, int high, int size) { if (low > high) return NULL; TreeNode* node = (TreeNode*)malloc(sizeof(TreeNode)); node->data = preorder[*preIndex]; *preIndex = *preIndex + 1; if (low == high) return node; int i; for (i = low; i <= high; i++) { if (preorder[i] > node->data) break; } node->left = buildTree(preorder, preIndex, *preIndex, i - 1, size); node->right = buildTree(preorder, preIndex, i, high, size); return node; } // 后序遍历二叉树 void postorderTraversal(TreeNode* root) { if (root == NULL) return; postorderTraversal(root->left); postorderTraversal(root->right); printf("%c ", root->data); } // 打印数组的函数(辅助函数,用于显示结果) void printArray(char* array, int size) { for (int i = 0; i < size; i++) { printf("%c ", array[i]); } printf("\n"); } ``` 在这个例子中,我们使用了序遍历二叉树构建算法来重新构建原始的二叉树,然后进行后序遍历
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值