数字图像matlab-运动物体检测

本文详细探讨了运动目标检测在图像处理和计算机视觉中的重要性,特别是利用MATLAB进行运动目标检测的算法,如背景提取与更新、帧间差法和背景差分法。通过对Surendra算法、帧间差分法和背景差分法的仿真,分析了各种方法的优缺点,如帧间差分法对运动目标检测的有效性但可能产生的噪声,以及背景差分法在背景建模理想状态下的优越表现。此外,还讨论了阈值选取和形态学滤波在消除噪声和改善图像质量方面的作用。
摘要由CSDN通过智能技术生成

1 绪论

  1. 课题研究背景及意义

运动目标检测是图像处理与计算机视觉的一个分支,在理论和实践上都有重大意义, 长久以来一直被国内外学者所关注。在实际中,视频监控利用摄像机对某一特定区域进行 监视,是一个细致和连续的过程,它可以由人来完成,但是人执行这种长期枯燥的例行监 测是不可靠,而且费用也很高,因此引入运动监测非常有必要 [1]。它可以减轻人的负担, 并且提高了可靠性。概括起来运动监测主要包括三个内容 [2]:运动目标检测,方向判断和 图像跟踪。运动目标检测是整个监测过程的基础,运动目标的提取准确与否,直接关系到 后续高级过程的完成质量。

  1. 国内外研究现状

运动目标检测在国外已经取得了一些的研究成果 [3],许多相关技术已经开始应用到实 际系统中,但是国内研究相对落后 ,与国外还有较大差距。传统的视频目标提取大致可以 分两类 ,一类以空间同性为准则 ,先用形态学滤波器或其他滤波器对图像作预处理 ;然后对 该图像的亮度、色度或其他信息作空间上的分割以对区域作边缘检测 ;之后作运动估计 ,

合并相似的运动区域以得到最终的提取结果。如光流算法、主动轮廓模型算法。此类方法 结果较为准确但是运算量相对较大。另一类算法主要以时间变化检测作为准则 ,这类算法

主要通过帧差检测图像上的变化区域和不变区域 ,将运动物体与静止背景进行分割。此类 方法运算量小 ,提取结果不如前类方法准确。此外 ,还有时空结合方法、时空亮度梯度信息 结合的方法等等 [4]。本文将围绕以时间变化监测为基础的方法展开分析和讨论。

  1. 本文结构

1 章介绍了本文的研究意义及国内外发展状况;第 2 章分为四个部分详细讲述了运 动目标检测的方法,介绍了背景提取与更新算法,检测算法,阈值选取,形态学滤波等; 第三章对全文作出了总结。

运动目标检测的一般过程

  1. 背景提取与更新算法

在进行运动目标检测时,一个很重要的步骤就是区分出运动目标和背景范围,常见的 一种情况是摄像机处于静止状态并且焦距也是固定的。 此时,图像中的背景区域固定不动。 在这种情况下,运动目标识别无论是使用背景差法,还是使用背景差法结合帧间差法,质 量良好的背景的建立显得及其重要。另外,当涉及到背景的使用时,一旦背景发生一些变 化时,如背景中频繁地出现运动物体,或者光照发生变化、树叶等小物体的晃动等等,使 得不能准确地提取背景作为参考图像,从而不能正确地分割出视频序列中的运动物体。为 了克服上述问题,国内外众多研究人员提出了背景建立和自适应的背景模型,实现了背景 模型的实时更新,能够比较准确地识别出运动目标。在能够满足实时性和实用性要求的前 提下,讨论并研究下列几种算法 [5] 

  1. 手动背景法 手动背景法需要人观察到没有前景物体时启动该帧图像,作为背景图像。这种背景提 取方法增加了人力和物力的需求,而且在很多情况下很难在没有前景的情况下获得背景图 像,比如高速公路的车辆监测系统、小区的门禁系统等等。这种方法不能实现自适应背景 更新的功能,需要使用其他方法修正由于光线,亮度等的变化带来的背景误差。
  2. 统计中值法 考虑到运动物体较少的情况下,连续多帧图像中背景的像素值占主要部分,这样在一 段时间内变化缓慢,取中值便可以认为是背景图像。统计中值算法从统计学的角度统计单 个像素点 Ai(x,y),(i=1,2, N)在连续帧图像中的亮度值 Bi。在一段时间内对视频序列图像的 亮度值(或者色彩信息 ) B i进行排序,然后取中值 M i(x,y)作为背景。该算法存在的问题在于: 图像帧的像素点大多以数万,数十万的数量级出现, 而用于取中值的图像帧数量 N 也应该 比较大。对如此大的数组进行排序取出中值,实现时计算量较大,处理较慢。同时需要占 用大量的内存单元用于存储数据。
  3. 算术平均法

采用算术平均法提取背景图像,可以总结为在特定的时间段内对像素点的亮度和色彩 信息取平均值,用均值作为背景图像对应像素点数值。在读入一段视频时,对某一像素点 进行观察,会发现在没有前景的运动目标通过时,该点的灰度值保持稳定,变化很小 ,只有

当前景的运动目标通过时,该点的灰度才会发生剧烈的变化。 这样就可以连续读入 N 帧图 像,对图像各点的灰度或色彩信息进行统计的方法,使得变化剧烈的像素点变得平缓,取 其平均值作为背景图像像素点的值。这样也可以滤除背景图像中的突变噪声点。其统计公 式如下:

N

B(x,y) N1 Ii(x,y) (2-1)

i1

公式中式中: B (x, y) 表示背景图像, Ii(x,y) 表示第 i 帧序列图像, N 表示平均帧数。在 实际场景中,一段时间内,同一区域很少有可能总是存在运动物体。而通过平均法得到的 背景就会消除亮暗分布不均匀的情况。

选取 N=120MATLAB 仿真,从序列图像的第 160120帧可以看出,在第 1 帧至第 120帧时都存在运动目标,如 2-1 图。经过对连续 120 帧计算算术平均值,得到了基本不 包含运动目标的背景图像,如 2-2 图。

(a)1 帧图像 (b)60 帧图像 (c)120 帧图像

2-1 各帧图像

2-2 算术法提取的背景图像

由上述仿真实验证明,算术平均法的特点是模型简单,计算方便,可以较好的得到背 景图像。但是在仿真过程中,也发现了该方法的一些问题。其中最明显的是,该算法得到 背景图像需要获取的图像帧较大。受运动物体数量的影响,随着平均帧数的增加,得到的 背景图像的质量越好。由于是求取序列图像的算术平均值,如果 N 值太小,背景图像中的

运动物体不容易被滤除,很容易在背景图像中留下“影子” 。而且在运动物体很多,轨迹 很固定的情况下,也需要加大 N 的数值,以使得平均值更加接近与真实的背景图像。在这 种情况下,背景的建立就需要较长的时间。本算法也有一定自适应更新功能。随着时间的 推移,在背景提取后获取的图像帧也可以作为新的信息量,与背景图像进行统计平均或加 权平均,实现背景的自适应更新。因此这种方法也使用于实时背景更新算法。

  1. Surendra 算法

Surendra背景更新算法 [6][7] 能够自适应地获取背景图像, 该算法提取背景的思想是对差 值图像的亮度值进行判断,如亮度大于阈值,背景图像对应位置的像素点保持不变,否则 利用当前帧对背景图像进行替换更新。其算法可以分成以下几个步骤:

  1. 将第 1帧图像 I1 作为背景 B1
  2. 选取阈值
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值